Full Text:   <2882>

Summary:  <1646>

CLC number: TM351

On-line Access: 2018-06-07

Received: 2022-04-22

Revision Accepted: 2022-04-22

Crosschecked: 2022-04-22

Cited: 0

Clicked: 5963

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jia-qiang Yang

http://orcid.org/0000-0002-3822-3301,10.1631/FITEE.1601390

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.4 P.569-581

http://doi.org/10.1631/FITEE.1601390


Accurate two-degree-of-freedom discrete-time current controller design for PMSM using complex vectors


Author(s):  Meng Wang, Jia-qiang Yang, Xiang Zhang, Chang-sheng Zhu

Affiliation(s):  College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   yjq1998@163.com

Key Words:  Permanent magnet synchronous machine (PMSM)]> Complex vector


Meng Wang, Jia-qiang Yang, Xiang Zhang, Chang-sheng Zhu. Accurate two-degree-of-freedom discrete-time current controller design for PMSM using complex vectors[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(4): 569-581.

@article{title="Accurate two-degree-of-freedom discrete-time current controller design for PMSM using complex vectors",
author="Meng Wang, Jia-qiang Yang, Xiang Zhang, Chang-sheng Zhu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="4",
pages="569-581",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601390"
}

%0 Journal Article
%T Accurate two-degree-of-freedom discrete-time current controller design for PMSM using complex vectors
%A Meng Wang
%A Jia-qiang Yang
%A Xiang Zhang
%A Chang-sheng Zhu
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 4
%P 569-581
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601390

TY - JOUR
T1 - Accurate two-degree-of-freedom discrete-time current controller design for PMSM using complex vectors
A1 - Meng Wang
A1 - Jia-qiang Yang
A1 - Xiang Zhang
A1 - Chang-sheng Zhu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 4
SP - 569
EP - 581
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601390


Abstract: 
Properties of the current controller are essential for permanent magnet synchronous machine (PMSM) drives, but the conventional continuous-time current controller cannot fully decouple the cross-coupling terms when applied in the digital processor. Its performance is related closely to the rotational speed. To improve the performance of the current loop, the direct design method in the discrete-time domain is adopted using the accurate discrete-time complex vector model. An integrated accurate hold-equivalent discrete model for PMSM is derived considering the difference between the output of the voltage source inverter and the back electro-motive force. Then an accurate two-degree-of-freedom (2DOF) current controller with a third-order closed-loop transfer function is designed. The 2DOF controller has more freedom in pole placement, and two schemes with a different cancelled pole-zero pair are investigated. Analysis is conducted by the robust root locus method via the complex vector root locus and sensitivity functions, showing properties in disturbance rejection and sensitivity to parameter variation of two schemes. Both schemes have their own advantages. Finally, the dynamic performance and flexibility of the proposed current controller is verified on a 2.5-kW PMSM test bench.

二自由度精确解耦离散复矢量永磁同步电机电流控制器

摘要:电流控制器性能对永磁同步电机驱动的影响至关重要,然而,在数字处理器中采用传统的连续域电流控制器不能使系统达到完全解耦,这使得电流控制器性能会随电机转速而变化。为提高电流控制器性能,提出一种利用精确离散复矢量模型在离散域直接设计电流控制器的方法。首先,针对变流器输出电压和电机反电势的不同特性推导出永磁同步电机的精确离散模型。然后,根据该模型设计出三阶形式精确解耦二自由度电流控制器,该控制器在配置系统闭环极点时自由度更高。针对两种不同的对消零极点位置选取方案,借助复矢量根轨迹和灵敏度函数对其抗干扰性和参数敏感度进行考察,结果表明两种方案各有优势。最后,在2.5kW永磁同步电机实验台上验证了所提电流控制器设计方法的有效性。

关键词:永磁同步电机;离散电流控制器;复矢量

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bae BH, Sul SK, 2003. A compensation method for time delay of full-digital synchronous frame current regulator of PWM AC drives. IEEE Trans Ind Appl, 39(3):802-810.

[2]Bernard N, Missoum R, Dang L, et al., 2016. Design methodology for high-speed permanent magnet synchro- nous machines. IEEE Trans Energy Conv, 31(2):477-485.

[3]Briz F, Degner MW, Lorenz RD, 2000. Analysis and design of current regulators using complex vectors. IEEE Trans Ind Appl, 36(3):817-825.

[4]del Blanco FB, Degner MW, Lorenz RD, 1999. Dynamic analysis of current regulators for AC motors using complex vectors. IEEE Trans Ind Appl, 35(6):1424-1432.

[5]Dòria-Cerezo A, Bodson M, 2016. Design of controllers for electrical power systems using a complex root locus method. IEEE Trans Ind Electron, 63(6):3706-3716.

[6]Harnefors L, 2007. Modeling of three-phase dynamic systems using complex transfer functions and transfer matrices. IEEE Trans Ind Electron, 54(4):2239-2248.

[7]Harnefors L, Nee HP, 1998. Model-based current control of AC machines using the internal model control method. IEEE Trans Ind Appl, 34(1):133-141.

[8]Hippe P, 2006. Windup in Control: Its Effects and Their Prevention. Springer-Verlag, London, p.27-40.

[9]Hoffmann N, Fuchs FW, Kazmierkowski MP, et al., 2016. Digital current control in a rotating reference frame—part I: system modeling and the discrete time-domain current controller with improved decoupling capabilities. IEEE Trans Power Electron, 31(7):5290-5305.

[10]Holmes DG, Lipo TA, 2003. Pulse Width Modulation for Power Converters: Principles and Practice. Wiley-IEEE Press, New York, p.259-333.

[11]Holtz J, Quan JT, Pontt J, et al., 2004. Design of fast and robust current regulators for high-power drives based on complex state variables. IEEE Trans Ind Appl, 40(5): 1388-1397.

[12]Kenny BH, Kascak PE, Jansen R, et al., 2005. Control of a high-speed flywheel system for energy storage in space applications. IEEE Trans Ind Appl, 41(4):1029-1038.

[13]Kim H, Degner MW, Guerrero JM, et al., 2010. Discrete-time current regulator design for AC machine drives. IEEE Trans Ind Appl, 46(4):1425-1435.

[14]Kim M, Sul SK, Lee J, 2014. Compensation of current measurement error for current-controlled PMSM drives. IEEE Trans Ind Appl, 50(5):3365-3373.

[15]Mohamed YARI, 2007. Design and implementation of a robust current-control scheme for a PMSM vector drive with a simple adaptive disturbance observer. IEEE Trans Ind Electron, 54(4):1981-1988.

[16]Park DM, Kim KH, 2014. Parameter-independent online compensation scheme for dead time and inverter nonlinearity in IPMSM drive through waveform analysis. IEEE Trans Ind Electron, 61(2):701-707.

[17]Rowan TM, Kerkman RJ, 1986. A new synchronous current regulator and an analysis of current-regulated PWM inverters. IEEE Trans Ind Appl, IA-22(4):678-690.

[18]Sozer Y, Torrey DA, Mese E, 2013. Adaptive predictive current control technique for permanent magnet synchronous motors. IET Power Electron, 6(1):9-19.

[19]Tong Y, Sinha NK, 1994. A computational technique for the robust root locus. IEEE Trans Ind Electron, 41(1):79-85.

[20]Underwood SJ, Husain I, 2010. Online parameter estimation and adaptive control of permanent-magnet synchronous machines. IEEE Trans Ind Electron, 57(7):2435-2443.

[21]Wolf CM, Degner MW, Briz F, 2015. Analysis of current sampling errors in PWM VSI drives. IEEE Trans Ind Appl, 51(2):1551-1560.

[22]Yepes AG, Vidal A, Malvar J, et al., 2014. Tuning method aimed at optimized settling time and overshoot for synchronous proportional-integral current control in electric machines. IEEE Trans Power Electron, 29(6): 3041-3054.

[23]Yim JS, Sul SK, Bae BH, et al., 2009. Modified current control schemes for high-performance permanent-magnet ac drives with low sampling to operating frequency ratio. IEEE Trans Ind Appl, 45(2):763-771.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE