Full Text:   <2665>

CLC number: TB303

On-line Access: 2010-10-05

Received: 2010-05-01

Revision Accepted: 2010-07-30

Crosschecked: 2010-09-15

Cited: 1

Clicked: 5460

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2010 Vol.11 No.10 P.822-826

http://doi.org/10.1631/jzus.A1000207


Shift in the percolation threshold of compressed composites —A 3D Monte Carlo simulation


Author(s):  Chuan Lin, Hong-tao Wang, Wei Yang

Affiliation(s):  Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China, Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   yangw@zju.edu.cn

Key Words:  Monte Carlo (MC) model, Percolation threshold, Compressed composites


Chuan Lin, Hong-tao Wang, Wei Yang. Shift in the percolation threshold of compressed composites —A 3D Monte Carlo simulation[J]. Journal of Zhejiang University Science A, 2010, 11(10): 822-826.

@article{title="Shift in the percolation threshold of compressed composites —A 3D Monte Carlo simulation",
author="Chuan Lin, Hong-tao Wang, Wei Yang",
journal="Journal of Zhejiang University Science A",
volume="11",
number="10",
pages="822-826",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000207"
}

%0 Journal Article
%T Shift in the percolation threshold of compressed composites —A 3D Monte Carlo simulation
%A Chuan Lin
%A Hong-tao Wang
%A Wei Yang
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 10
%P 822-826
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000207

TY - JOUR
T1 - Shift in the percolation threshold of compressed composites —A 3D Monte Carlo simulation
A1 - Chuan Lin
A1 - Hong-tao Wang
A1 - Wei Yang
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 10
SP - 822
EP - 826
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000207


Abstract: 
The shift in the percolation threshold of compressed composites was studied by a 3D continuum percolation model. A Monte Carlo (MC) method was employed in the simulations. The percolation threshold was found to rise with the compression strain, which captures the basic trend in compression-induced conductivity variation from the experiments. Both fiber bending and texture formation contribute to the percolation threshold. The results suggest that fillers with a high aspect ratio are more desirable for sensor and electrical switch applications.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bauhofer, W., Kovacs, J.Z., 2009. A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 69(10):1486-1498.

[2]Carmona, F., Canet, R., Delhaes, P., 1987. Piezoresistance of heterogeneous solids. Journal of Applied Physics, 61(7):2550-2557.

[3]Dang, Z.M., Wang, L., Yin, Y., Zhang, Q., Lei, Q.Q., 2007. Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Advanced Materials, 19(6):852-857.

[4]Foygel, M., Morris, R.D., Anez, D., French, S., Sobolev, V.L., 2005. Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Physical Review B, 71(10):104201.

[5]Hussain, M., Choa, Y.H., Niihara, K., 2001. Fabrication process and electrical behavior of novel pressure-sensitive composites. Composites Part A: Applied Science and Manufacturing, 32(12):1689-1696.

[6]Kirkpatrick, S., 1973. Percolation and conduction. Reviews of Modern Physics, 45(4):574-588

[7]Li, C., Chou, T.W., 2007. Continuum percolation of nanocomposites with fillers of arbitrary shapes. Applied Physics Letters, 90(17):174108.

[8]Lin, C., Wang, H., Yang, W., 2010. Variable percolation threshold of composites with fiber fillers under compression. Journal of Applied Physics, 108(1):013509.

[9]Ma, H.M., Gao, X.L., 2008. A three-dimensional Monte Carlo model for electrically conductive polymer matrix composites filled with curved fibers. Polymer, 49(19):4230-4238.

[10]Ma, H.M., Gao, X.L., Tolle, T.B., 2010. Monte Carlo modeling of the fiber curliness effect on percolation of conductive composites. Applied Physics Letters, 96(6):061910.

[11][doi:10.1063/1.3309590]

[12]Safran, S.A., Webman, I., Grest, G.S., 1985. Percolation in interacting colloids. Physical Review A, 32(1):506-511

[13]Wichmann, M.H.G., Buschhorn, S.T., Gehrmann, J., Schulte, K., 2009. Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load. Physical Review B, 80(24):245437.

[14]Yang, J.H., Xu, T., Lu, A., Zhang, Q., Fu, Q., 2008. Electrical properties of poly(phenylene sulfide)/multiwalled carbon nanotube composites prepared by simple mixing and compression. Journal of Applied Polymer Science, 109(2):720-726.

[15]Zhang, X.W., Pan, Y., Zheng, Q., Yi, X.S., 2000. Time dependence of piezoresistance for the conductor filled polymer composites. Journal of Polymer Science Part B Polymer Physics, 38(21):2739-2749.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE