Full Text:   <2975>

CLC number: Q27

On-line Access: 2010-04-28

Received: 2009-11-02

Revision Accepted: 2010-03-03

Crosschecked: 2010-04-17

Cited: 3

Clicked: 6258

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2010 Vol.11 No.5 P.323-331

http://doi.org/10.1631/jzus.B0900349


Neurochip based on light-addressable potentiometric sensor with wavelet transform de-noising


Author(s):  Qing-jun Liu, Wei-wei Ye, Hui Yu, Ning Hu, Li-ping Du, Ping Wang

Affiliation(s):  Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China, State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China

Corresponding email(s):   cnpwang@zju.edu.cn

Key Words:  Neurochip, Light-addressable potentiometric sensor (LAPS), Wavelet transform, Threshold, De-noising


Qing-jun Liu, Wei-wei Ye, Hui Yu, Ning Hu, Li-ping Du, Ping Wang. Neurochip based on light-addressable potentiometric sensor with wavelet transform de-noising[J]. Journal of Zhejiang University Science B, 2010, 11(5): 323-331.

@article{title="Neurochip based on light-addressable potentiometric sensor with wavelet transform de-noising",
author="Qing-jun Liu, Wei-wei Ye, Hui Yu, Ning Hu, Li-ping Du, Ping Wang",
journal="Journal of Zhejiang University Science B",
volume="11",
number="5",
pages="323-331",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0900349"
}

%0 Journal Article
%T Neurochip based on light-addressable potentiometric sensor with wavelet transform de-noising
%A Qing-jun Liu
%A Wei-wei Ye
%A Hui Yu
%A Ning Hu
%A Li-ping Du
%A Ping Wang
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 5
%P 323-331
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0900349

TY - JOUR
T1 - Neurochip based on light-addressable potentiometric sensor with wavelet transform de-noising
A1 - Qing-jun Liu
A1 - Wei-wei Ye
A1 - Hui Yu
A1 - Ning Hu
A1 - Li-ping Du
A1 - Ping Wang
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 5
SP - 323
EP - 331
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0900349


Abstract: 
neurochip based on light-addressable potentiometric sensor (LAPS), whose sensing elements are excitable cells, can monitor electrophysiological properties of cultured neuron networks with cellular signals well analyzed. Here we report a kind of neurochip with rat pheochromocytoma (PC12) cells hybrid with LAPS and a method of de-noising signals based on wavelet transform. Cells were cultured on LAPS for several days to form networks, and we then used LAPS system to detect the extracellular potentials with signals de-noised according to decomposition in the time-frequency space. The signal was decomposed into various scales, and coefficients were processed based on the properties of each layer. At last, signal was reconstructed based on the new coefficients. The results show that after de-noising, baseline drift is removed and signal-to-noise ratio is increased. It suggests that the neurochip of PC12 cells coupled to LAPS is stable and suitable for long-term and non-invasive measurement of cell electrophysiological properties with wavelet transform, taking advantage of its time-frequency localization analysis to reduce noise.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Artursson, T., Holmberg, M., 2002. Wavelet transform of electronic tongue data. Sens. Actuators B: Chem., 87(2):379-391.

[2]Bousse, L., 1996. Whole cell biosensors. Sens. Actuators B: Chem., 34(1-3):270-275.

[3]Chalfie, M., Perlman, R.L., 1976. Studies of a transplantable rat pheochromocytoma: biochemical characterization and catecholamine secretion. J. Pharmacol. Exp. Ther., 197(3):615-622.

[4]Fanigliulo, A., Accossato, P., Adami, M., Lanzi, M., Martinoia, S., Paddeu, S., Parodi, M.T., Rossi, A., Sartore, M., Grattarola, M., et al., 1996. Comparison between a LAPS and an FET-based sensor for cell-metabolism detection. Sens. Actuators B: Chem., 32(1):41-48.

[5]Fromherz, P., 2003. Semiconductor chips with ion channels, nerve cells and brain. Physica E, 16(1):24-34.

[6]Fromherz, P., Offenhausser, A., Vetter, T., Weis, J., 1991. A neuron-silicon junction: a retzius cell of the leech on an insulated-gate field effect transistor. Science, 252(5010):1290-1293.

[7]Gilchrist, K.H., Giovangrandi, L., Whittington, R.H., Kovacs, G.T.A., 2005. Sensitivity of cell-based biosensors to environmental variables. Biosens. Bioelectron., 20(7):1397-1406.

[8]Greene, L.A., Tischler, A.S., 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA, 73(7):2424-2428.

[9]Hafeman, D.G., Parce, J.W., McConnell, H.M., 1988. Light-addressable potentiometric sensor for biochemical systems. Science, 240(4856):1182-1185.

[10]Hassenklöver, T., Predehl, S., Pilli, J., Ledwolorz, J., Assmann, M., Bickmeyer, U., 2006. Bromophenols, both present in marine organisms and in industrial flame retardants, disturb cellular Ca2+ signaling in neuroendocrine cells (PC12). Aquat. Toxicol., 76(1):37-45.

[11]Hegg, C.C., Miletic, V., 1996. Acute exposure to inorganic lead modifies high-threshold voltage-gated calcium currents in rat PC12 cells. Brain Res., 738(2):333-336.

[12]Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its application to conduction and excitation in never. J. Physiol., 117:500-544.

[13]Huys, R., Braeken, D., van Meerbergen, B., Winters, K., Eberle, W., Loo, J., Tsvetanova, D., Chen, C., Severi, S., Yitzchaik, S., et al., 2008. Novel concepts for improved communication between nerve cells and silicon electronic devices. Solid State Electron., 52(4):533-539.

[14]Ismail, A.B., Yoshinobu, T., Iwasaki, H., Sugihara, H., Yukimasa, T., Hirata, I., Iwata, H., 2003. Investigation on light-addressable potentiometric sensor as a possible cell-semiconductor hybrid. Biosens. Bioelectron., 18(12):1509-1514.

[15]Kovacs, G.T.A., 2003. Electronic sensors with living cellular components. Proc. IEEE, 91(6):915-929.

[16]Liu, Q., Cai, H., Xu, Y., Li, Y., Li, R., Wang, P., 2006. Olfactory cell-based biosensor: a first step towards a neurochip of bioelectronic nose. Biosens. Bioelectron., 22(2):318-322.

[17]Liu, Q., Yu, J., Huang, H., Cai, H., Xu, Y., Li, Y., Li, R., Wang, P., 2007. Embryonic stem cells as a novel cell source of cell-based biosensor. Biosens. Bioelectron., 22(6):810-815.

[18]Maher, M.P., Pine, J., Wright, J., Tai, Y.C., 1999. The neurochip: a new multielectrode device for stimulation and recording from cultured neurons. J. Neurosci. Meth., 87(1):45-56.

[19]Manganiello, L., Vega, C., Ros, A., Valcarcel, M., 2002. Use of wavelet transform to enhance piezoelectric signals for analytical purposes. Anal. Chim. Acta, 456(1):93-103.

[20]Nakagawa, S., Yamamoto, K., 1997. Speech recognition using hidden Markov models based on segmental statistics. Syst. Comput. Jpn, 28(7):31-38.

[21]Neher, E., 2001. Molecular biology meets microelectronics. Nat. Biotechnol., 19(2):114.

[22]Pancrazio, J.J., Whelan, J.P., Borkholder, D.A., Ma, W., Stenger, D.A., 1999. Development and application of cell-based biosensors. Ann. Biomed. Eng., 27(6):697-711.

[23]Parak, W.J., George, M., Domke, J., Radmacher, M., Behrends, J.C., Denyer, M.C., Gaub, H.E., 2000. Can the light-addressable potentiometric sensor (LAPS) detect extracellular potentials of cardiac myocytes? IEEE. Trans. Biomed. Eng., 47(8):1106-1113.

[24]Sardy, S., Tseng, P., Bruce, A., 2001. Robust wavelet denoising. IEEE Trans. Signal Process., 49(6):1146-1152.

[25]Slaughter, G., Hobson, R.S., 2009. An impedimetric biosensor based on PC12 cells for the monitoring of exogenous agents. Biosens. Bioelectron., 24(5):1153-1158.

[26]Stein, B., George, M., Gaub, H.E., Parak, W.J., 2004. Extracellular measurements of averaged ionic currents with the light-addressable potentiometric sensor (LAPS). Sens. Actuators B: Chem., 98(2-3):299-304.

[27]Stenger, D.A., Gross, G.W., Keefer, E.W., Shaffer, K.M., Andreadis, J.D., Ma, W., Pancrazio, J.J., 2001. Detection of physiologically active compounds using cell-based biosensors. Trends Biotechnol., 19(8):304-309.

[28]Wang, P., Liu, Q., 2009. Cell-based Biosensors: Principles and Applications. Artech House Publisher, Norwood, MA, USA, p.1-10.

[29]Wang, P., Xu, G., Qin, L., Xu, Y., Li, Y., Li, R., 2005. Cell-based biosensors and its application in biomedicine. Sens. Actuators B: Chem., 108(1-2):576-584.

[30]Xu, G., Ye, X., Qin, L., Xu, Y., Li, Y., Li, R., Wang, P., 2005. Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosens. Bioelectron., 20(9):1757-1763.

[31]Zhu, K., Wong, Y.S., Hong, G.S., 2009. Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results. Int. J. Mach. Tool. Manu., 49(7-8):537-553.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE