Full Text:   <3250>

CLC number: Q815

On-line Access: 2013-04-03

Received: 2012-05-30

Revision Accepted: 2012-10-31

Crosschecked: 2013-03-07

Cited: 3

Clicked: 5504

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2013 Vol.14 No.4 P.346-354

http://doi.org/10.1631/jzus.B1200153


Enhancing production of a 24-membered ring macrolide compound by a marine bacterium using response surface methodology


Author(s):  Hua Chen, Mian-bin Wu, Zheng-jie Chen, Ming-lu Wang, Jian-ping Lin, Li-rong Yang

Affiliation(s):  Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   chenhua0563@yahoo.com.cn, wumb@zju.edu.cn, linjp@zju.edu.cn

Key Words:  24-membered ring macrolide, Enhancing production, Response surface methodology, Faeces bombycis, Marine bacterium


Hua Chen, Mian-bin Wu, Zheng-jie Chen, Ming-lu Wang, Jian-ping Lin, Li-rong Yang. Enhancing production of a 24-membered ring macrolide compound by a marine bacterium using response surface methodology[J]. Journal of Zhejiang University Science B, 2013, 14(4): 346-354.

@article{title="Enhancing production of a 24-membered ring macrolide compound by a marine bacterium using response surface methodology",
author="Hua Chen, Mian-bin Wu, Zheng-jie Chen, Ming-lu Wang, Jian-ping Lin, Li-rong Yang",
journal="Journal of Zhejiang University Science B",
volume="14",
number="4",
pages="346-354",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1200153"
}

%0 Journal Article
%T Enhancing production of a 24-membered ring macrolide compound by a marine bacterium using response surface methodology
%A Hua Chen
%A Mian-bin Wu
%A Zheng-jie Chen
%A Ming-lu Wang
%A Jian-ping Lin
%A Li-rong Yang
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 4
%P 346-354
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1200153

TY - JOUR
T1 - Enhancing production of a 24-membered ring macrolide compound by a marine bacterium using response surface methodology
A1 - Hua Chen
A1 - Mian-bin Wu
A1 - Zheng-jie Chen
A1 - Ming-lu Wang
A1 - Jian-ping Lin
A1 - Li-rong Yang
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 4
SP - 346
EP - 354
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1200153


Abstract: 
A 24-membered ring macrolide compound, macrolactin A has potential applications in pharmaceuticals for its anti-infectious and antiviral activity. In this study, macrolactin A was produced by a marine bacterium, which was identified as Bacillus subtilis by 16S ribosomal RNA (rRNA) sequence analysis. Electrospray ionization mass spectrometry (ESI/MS) and nuclear magnetic resonance (NMR) spectroscopy analyses were used to characterize this compound. To improve the production, response surface methodology (RSM) involving Box-Behnken design (BBD) was employed. Faeces bombycis, the main by-product in sericulture, was used as a nitrogen source in fermentation. The interactions between three significant factors, F. bombycis, soluble starch, and (NH4)2SO4 were investigated. A quadratic model was constructed to fit the production and the factors. Optimum medium composition was obtained by analysis of the model. When cultivated in the optimum medium, the production of macrolactin A was increased to 851 mg/L, 2.7 times as compared to the original. This study is also useful to find another way in utilizing F. bombycis.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bärmann, H., Prahlad, V., Tao, C., Yun, Y.K., Wang, Z., Donaldson, W.A., 2000. Development of organoiron methodology for preparation of the polyene natural product macrolactin A. Tetrahedron, 56(15):2283-2295.

[2]Deepak, V., Kalishwaralal, K., Ramkumarpandian, S., 2008. Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresour. Technol., 99(17):8170-8174.

[3]Demain, A.L., 2006. From natural products discovery to commercialization: a success story. J. Ind. Microbiol. Biotechnol., 33(7):486-495.

[4]Gao, H., Liu, M., Liu, J., Dai, H., Zhou, X., Liu, X., Zhuo, Y., Zhang, W., Zhang, L., 2009. Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresour. Technol., 100(17):4012-4016.

[5]Gustafson, K., Roman, M., Fenical, W., 1989. The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J. Am. Chem. Soc., 111(19):7519-7524.

[6]Mutalik, S.R., Vaidya, B.K., Joshi, R.M., Desai, K.M., Nene, S.N., 2008. Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresour. Technol., 99(16):7875-7880.

[7]Romero-Tabarez, M., Jansen, R., Sylla, M., Lünsdorf, H., Häußler, S., Santosa, D., Timmis, K., Molinari, G., 2006. 7-O-malonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococci, and a small-colony variant of Burkholderia cepacia. Antimicrob. Agents Chemother., 50(5):1701-1709.

[8]Sambrook, J., Maniatis, T., 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, p.23-38.

[9]Syed, D.G., Lee, J.C., Li, W.J., Kim, C.J., Agasar, D., 2009. Production, characterization and application of keratinase from Streptomyces gulbargensis. Bioresour. Technol., 100(5):1868-1871.

[10]Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res., 22(22):4673-4680.

[11]Wei, Z.J., Liao, A.M., Zhang, H.X., Liu, J., Jiang, S.T., 2009. Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology. Bioresour. Technol., 100(18):4214-4219.

[12]Wei, Z.J., Zhou, L.C., Chen, H., Chen, G.H., 2011. Optimization of the fermentation conditions for 1-deoxynojirimycin production by Streptomyces lawendulae applying the response surface methodology. Int. J. Food Eng., 7(3):1-10.

[13]Yang, H., Zhu, X., Fang, Z., 2002. Research progress on exploiting and utilizing of silkworm Feces. Bull. Seric., 33(3):9-12 (in Chinese).

[14]Zhang, H., Li, J.L., Li, C.X., Feng, L.J., 1999. Multiple utilization of Faeces bombycis in current and future. Liaoning Agric. Sci., 4:24-26 (in Chinese).

[15]Zhang, Y., Li, Q., Zhang, Y., Wang, D., Xing, J., 2012. Optimization of succinic acid fermentation with Actinobacillus succinogenes by response surface methodology (RSM). J. Zhejiang Univ-Sci. B (Biomed. & Biotechnol.), 13(2):103-110.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE