Full Text:   <2713>

CLC number: R692

On-line Access: 2016-03-07

Received: 2015-08-26

Revision Accepted: 2016-01-03

Crosschecked: 2016-02-15

Cited: 2

Clicked: 4135

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Qi Qian

http://orcid.org/0000-0002-1735-2657

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2016 Vol.17 No.3 P.181-187

http://doi.org/10.1631/jzus.B1500201


0.9% saline is neither normal nor physiological


Author(s):  Heng Li, Shi-ren Sun, John Q. Yap, Jiang-hua Chen, Qi Qian

Affiliation(s):  Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; more

Corresponding email(s):   Qian.Qi@mayo.edu

Key Words:  0.9% saline, Hyperchloremia, Acidosis, Hyperkalemia, Balanced fluids, Renal hemodynamics


Heng Li, Shi-ren Sun, John Q. Yap, Jiang-hua Chen, Qi Qian. 0.9% saline is neither normal nor physiological[J]. Journal of Zhejiang University Science B, 2016, 17(3): 181-187.

@article{title="0.9% saline is neither normal nor physiological",
author="Heng Li, Shi-ren Sun, John Q. Yap, Jiang-hua Chen, Qi Qian",
journal="Journal of Zhejiang University Science B",
volume="17",
number="3",
pages="181-187",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500201"
}

%0 Journal Article
%T 0.9% saline is neither normal nor physiological
%A Heng Li
%A Shi-ren Sun
%A John Q. Yap
%A Jiang-hua Chen
%A Qi Qian
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 3
%P 181-187
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500201

TY - JOUR
T1 - 0.9% saline is neither normal nor physiological
A1 - Heng Li
A1 - Shi-ren Sun
A1 - John Q. Yap
A1 - Jiang-hua Chen
A1 - Qi Qian
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 3
SP - 181
EP - 187
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500201


Abstract: 
The purpose of this review is to objectively evaluate the biochemical and pathophysiological properties of 0.9% saline (henceforth: saline) and to discuss the impact of saline infusion, specifically on systemic acid-base balance and renal hemodynamics. Studies have shown that electrolyte balance, including effects of saline infusion on serum electrolytes, is often poorly understood among practicing physicians and inappropriate saline prescribing can cause increased morbidity and mortality. Large-volume (>2 L) saline infusion in healthy adults induces hyperchloremia which is associated with metabolic acidosis, hyperkalemia, and negative protein balance. Saline overload (80 ml/kg) in rodents can cause intestinal edema and contractile dysfunction associated with activation of sodium-proton exchanger (NHE) and decrease in myosin light chain phosphorylation. Saline infusion can also adversely affect renal hemodynamics. Microperfusion experiments and real-time imaging studies have demonstrated a reduction in renal perfusion and an expansion in kidney volume, compromising O2 delivery to the renal parenchyma following saline infusion. Clinically, saline infusion for patients post abdominal and cardiovascular surgery is associated with a greater number of adverse effects including more frequent blood product transfusion and bicarbonate therapy, reduced gastric blood flow, delayed recovery of gut function, impaired cardiac contractility in response to inotropes, prolonged hospital stay, and possibly increased mortality. In critically ill patients, saline infusion, compared to balanced fluid infusions, increases the occurrence of acute kidney injury. In summary, saline is a highly acidic fluid. With the exception of saline infusion for patients with hypochloremic metabolic alkalosis and volume depletion due to vomiting or upper gastrointestinal suction, indiscriminate use, especially for acutely ill patients, may cause unnecessary complications and should be avoided. More education regarding saline-related effects and adequate electrolyte management is needed.

0.9%盐水既不正常也不生理

概要:本文旨在客观评价0.9%氯化钠溶液(盐水)的生物化学和病理生理学特性,并深入探讨静脉输注该盐水对机体酸碱平衡和肾脏血流动力学的影响。研究表明多数临床医生对电解质平衡的认识有限,对静脉输注盐水所引起的血浆电解质变化认识不足。而错误地应用盐水会增加患者的患病率和死亡率。健康成人大剂量(>2 L)输注盐水会导致高氯血症并进而引起代谢性酸中毒、高钾血症和负氮平衡。总之,盐水是一种高度酸化的液体,用于治疗呕吐或上消化道减压引起的低氯性代谢性碱中毒和容量不足较为合适。临床上不加区分地应用盐水对患者特别是对重症患者可能导致不必要的并发症,应注意避免。临床医生对于盐水相关作用和电解质管理的认识亟需增强。
关键词:0.9%氯化钠溶液(盐水);高氯血症;酸中毒;高钾血症;平衡液;肾脏血流动力学

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Awad, S., Allison, S.P., Lobo, D.N., 2008. The history of 0.9% saline. Clin. Nutr., 27(2):179-188.

[2]Ballmer, P.E., McNurlan, M.A., Hulter, H.N., et al., 1995. Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J. Clin. Invest., 95(1):39-45.

[3]Barak, M., Rudin, M., Vofsi, O., et al., 2004. Fluid administration during abdominal surgery influences on coagulation in the postoperative period. Curr. Surg., 61(5):459-462.

[4]Bell, P.D., Lapointe, J.Y., Cardinal, J., et al., 1989. Direct measurement of basolateral membrane potentials from cells of the macula densa. Am. J. Physiol., 257(3 Pt 2):F463-F468.

[5]Bell, P.D., Komlosi, P., Zhang, Z.R., et al., 2009. ATP as a mediator of macula densa cell signalling. Purinergic Signal., 5(4):461-471.

[6]Brandstrup, B., Tønnesen, H., Beier-Holgersen, R., et al., 2003. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann. Surg., 238(5):641-648.

[7]Chowdhury, A.H., Cox, E.F., Francis, S.T., et al., 2012. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte(R) 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann. Surg., 256(1):18-24.

[8]Day, S.M., Westfall, M.V., Fomicheva, E.V., et al., 2006. Histidine button engineered into cardiac troponin I protects the ischemic and failing heart. Nat. Med., 12(2):181-189.

[9]Day, S.M., Westfall, M.V., Metzger, J.M., 2007. Tuning cardiac performance in ischemic heart disease and failure by modulating myofilament function. J. Mol. Med., 85(9):911-921.

[10]Debold, E.P., Beck, S.E., Warshaw, D.M., 2008. Effect of low pH on single skeletal muscle myosin mechanics and kinetics. Am. J. Physiol. Cell Physiol., 295(1):C173-C179.

[11]Fujita, H., Ishiwata, S., 1999. Tropomyosin modulates pH dependence of isometric tension. Biophys. J., 77(3):1540-1546.

[12]Hansen, P.B., Jensen, B.L., Skott, O., 1998. Chloride regulates afferent arteriolar contraction in response to depolarization. Hypertension, 32(6):1066-1070.

[13]Herrler, T., Tischer, A., Meyer, A., et al., 2010. The intrinsic renal compartment syndrome: new perspectives in kidney transplantation. Transplantation, 89(1):40-46.

[14]Ho, A.M.H., Karmakar, M.K., Contardi, L.H., et al., 2001. Excessive use of normal saline in managing traumatized patients in shock: a preventable contributor to acidosis. J. Trauma, 51(1):173-177.

[15]Jensen, B.L., Ellekvist, P., Skott, P., et al., 1997. Chloride is essential for contraction of afferent arterioles after agonists and potassium. Am. J. Physiol., 272(3 Pt 2):F389-F396.

[16]Kapur, S., Wasserstrom, J.A., Skøtt, O., 2009. Acidosis and ischemia increase cellular Ca2+ transient alternans and repolarization alternans susceptibility in the intact rat heart. Am. J. Physiol. Heart Circ. Physiol., 296(5):H1491-H1512.

[17]Kellum, J.A., Song, M., Almasri, E., 2006. Hyperchloremic acidosis increases circulating inflammatory molecules in experimental sepsis. Chest, 130(4):962-967.

[18]Kessler, R., Leibhammer, S., Laue, O., et al., 1997. Acute saline infusion induces extracellular acidification and activation of the Na+/H+ exchanger in man. Eur. J. Clin. Invest., 27(7):558-565.

[19]Koch, S.M., Taylor, R.W., 1992. Chloride ion in intensive care medicine. Crit. Care Med., 20(2):227-240.

[20]Knuth, S.T., Dave, H., Peters, J.R., et al., 2006. Low cell pH depresses peak power in rat skeletal muscle fibres at both 30°C and 15°C: implications for muscle fatigue. J. Physiol., 575(Pt 3):887-899.

[21]Levy, B., Collin, S., Sennoun, N., et al., 2010. Vascular hyporesponsiveness to vasopressors in septic shock: from bench to bedside. Intensive Care Med., 36(12):2019-2029.

[22]Lobo, D.N., Dube, M.G., Neal, K.R., et al., 2001. Problems with solutions: drowning in the brine of an inadequate knowledge base. Clin. Nutr., 20(2):125-130.

[23]Lobo, D.N., Bostock, K.A., Neal, K.R., et al., 2002a. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet, 359(9320):1812-1818.

[24]Lobo, D.N., Dube, M.G., Neal, K.R., et al., 2002b. Peri-operative fluid and electrolyte management: a survey of consultant surgeons in the UK. Ann. R. Coll. Surg. Engl., 84(3):156-160.

[25]Mitchell, J.H., Wildenthal, K., Johnson, R.L.Jr., et al., 1972. The effects of acid-base disturbances on cardiovascular and pulmonary function. Kidney Int., 1(5):375-389.

[26]Mitchell, K.D., Navar, L.G., 1988. Enhanced tubuloglomerular feedback during peritubular infusions of angiotensins I and II. Am. J. Physiol., 255(3 Pt 2):F383-F390.

[27]Mitchell, K.D., Navar, L.G., 1990. Interactive effects of angiotensin II on renal hemodynamics and tubular reabsorptive function. Kidney Int. Suppl., 30:S69-S73.

[28]Modi, M.P., Vora, K.S., Parikh, G.P., et al., 2012. A comparative study of impact of infusion of Ringer’s Lactate solution versus normal saline on acid-base balance and serum electrolytes during live related renal transplantation. Saudi J. Kidney Dis. Transpl., 23(1):135-137.

[29]Moopanar, T.R., Allen, D.G., 2005. Reactive oxygen species reduce myofibrillar Ca2+ sensitivity in fatiguing mouse skeletal muscle at 37°C. J. Physiol., 564(Pt 1):189-199.

[30]Moopanar, T.R., Allen, D.G., 2006. The activity-induced reduction of myofibrillar Ca2+ sensitivity in mouse skeletal muscle is reversed by dithiothreitol. J. Physiol., 571(Pt 1):191-200.

[31]Morimoto, S., Harada, K., Ohtsuki, I., et al., 1999. Roles of troponin isoforms in pH dependence of contraction in rabbit fast and slow skeletal and cardiac muscles. J. Biochem., 126(1):121-129.

[32]O'Malley, C.M., Frumento, R.J., Hardy, M.A., et al., 2005. A randomized, double-blind comparison of lactated Ringer’s solution and 0.9% NaCl during renal transplantation. Anesth. Analg., 100(5):1518-1524.

[33]Oppermann, M., Mizel, D., Huang, G., et al., 2006. Macula densa control of renin secretion and preglomerular resistance in mice with selective deletion of the B isoform of the Na,K,2Cl co-transporter. J. Am. Soc. Nephrol., 17(8):2143-2152.

[34]Oppermann, M., Mizel, D., Kim, S.M., et al., 2007. Renal function in mice with targeted disruption of the A isoform of the Na-K-2Cl co-transporter. J. Am. Soc. Nephrol., 18(2):440-448.

[35]Powers, F., 1999. The role of chloride in acid-base balance. J. Intraven. Nurs., 22(5):286-291.

[36]Puljak, L., Kilic, G., 2006. Emerging roles of chloride channels in human diseases. Biochim. Biophys. Acta, 1762(4):404-413.

[37]Reid, F., Lobo, D.N., Williams, R.N., et al., 2003. (Ab)normal saline and physiological Hartmann’s solution: a randomized double-blind crossover study. Clin. Sci., 104(1):17-24.

[38]Ren, Y., Garvin, J.L., Liu, R., et al., 2004. Role of macula densa adenosine triphosphate (ATP) in tubuloglomerular feedback. Kidney Int., 66(4):1479-1485.

[39]Scheingraber, S., Rehm, M., Sehmisch, C., et al., 1999. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology, 90(5):1265-1270.

[40]Schotola, H., Toischer, K., Popov, A.F., et al., 2012. Mild metabolic acidosis impairs the β-adrenergic response in isolated human failing myocardium. Crit. Care, 16(4):R153.

[41]Shaw, A.D., Bagshaw, S.M., Goldstein, S.L., et al., 2012. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann. Surg., 255(5):821-829.

[42]Shires, G.T., Holman, J., 1948. Dilution acidosis. Ann. Intern. Med., 28(3):557-559.

[43]Snook, J.H., Li, J., Helmke, B.P., et al., 2008. Peroxynitrite inhibits myofibrillar protein function in an in vitro assay of motility. Free Radic. Biol. Med., 44(1):14-23.

[44]Stewart, P.A., 1983. Modern quantitative acid-base chemistry. Can. J. Physiol. Pharmacol., 61(12):1444-1461.

[45]Stone, H.H., Fulenwider, J.T., 1977. Renal decapsulation in the prevention of post-ischemic oliguria. Ann. Surg., 186(3):343-355.

[46]Tang, Y.B., Zhou, J.G., Guan, Y.Y., 2010. Volume-regulated chloride channels and cerebral vascular remodelling. Clin. Exp. Pharmacol. Physiol., 37(2):238-242.

[47]Traynor, T., Yang, T., Huang, Y.G., et al., 1998. Inhibition of adenosine-1 receptor-mediated preglomerular vasoconstriction in AT receptor-deficient mice. Am. J. Physiol., 275(6 Pt 2):F922-F927.

[48]Uray, K.S., Shah, S.K., Radhakrishnan, R.S., et al., 2011. Sodium hydrogen exchanger as a mediator of hydrostatic edema-induced intestinal contractile dysfunction. Surgery, 149(1):114-125.

[49]Veech, R.L., 1986. The toxic impact of parenteral solutions on the metabolism of cells: a hypothesis for physiological parenteral therapy. Am. J. Clin. Nutr., 44(4):519-551.

[50]Veizis, I.E., Cotton, C.U., 2007. Role of kidney chloride channels in health and disease. Pediatr. Nephrol., 22(6):770-777.

[51]Waters, J.H., Gottlieb, A., Schoenwald, P., et al., 2001. Normal saline versus lactated Ringer’s solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth. Analg., 93(4):817-822.

[52]Wilcox, C.S., 1983. Regulation of renal blood flow by plasma chloride. J. Clin. Invest., 71(3):726-735.

[53]Wilkes, N.J., Woolf, R., Mutch, M., et al., 2001. The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth. Analg., 93(4):811-816.

[54]Williams, E.L., Hildebrand, K.L., McCormick, S.A., et al., 1999. The effect of intravenous lactated Ringer’s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth. Analg., 88(5):999-1003.

[55]Yunos, N.M., Bellomo, R., Story, D., et al., 2010. Bench-to-bedside review: chloride in critical illness. Crit. Care, 14(4):226.

[56]Zand, L., King, B.F., Qian, Q., 2014. Role of kidney Doppler ultrasonography in the diagnosis and management of anuric kidney failure. Clin. Nephrol., 82(2):122-127.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE