Full Text:   <2163>

Summary:  <1402>

CLC number: Q946

On-line Access: 2017-09-05

Received: 2016-06-02

Revision Accepted: 2016-10-23

Crosschecked: 2017-08-16

Cited: 0

Clicked: 4194

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Hyun-Dong Paik

http://orcid.org/0000-0001-9891-7703

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.9 P.816-824

http://doi.org/10.1631/jzus.B1600234


Antimelanogenic effects of Inula britannica flower petal extract fermented by Lactobacillus plantarum KCCM 11613P


Author(s):  Eun-hye Park, Won-young Bae, Jae-yeon Kim, Kee-tae Kim, Hyun-dong Paik

Affiliation(s):  Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; more

Corresponding email(s):   hdpaik@konkuk.ac.kr

Key Words:  Inula britannica, Flavonoid, Lactobacillus plantarum, Antioxidant, Tyrosinase inhibitor


Eun-hye Park, Won-young Bae, Jae-yeon Kim, Kee-tae Kim, Hyun-dong Paik. Antimelanogenic effects of Inula britannica flower petal extract fermented by Lactobacillus plantarum KCCM 11613P[J]. Journal of Zhejiang University Science B, 2017, 18(9): 816-824.

@article{title="Antimelanogenic effects of Inula britannica flower petal extract fermented by Lactobacillus plantarum KCCM 11613P",
author="Eun-hye Park, Won-young Bae, Jae-yeon Kim, Kee-tae Kim, Hyun-dong Paik",
journal="Journal of Zhejiang University Science B",
volume="18",
number="9",
pages="816-824",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600234"
}

%0 Journal Article
%T Antimelanogenic effects of Inula britannica flower petal extract fermented by Lactobacillus plantarum KCCM 11613P
%A Eun-hye Park
%A Won-young Bae
%A Jae-yeon Kim
%A Kee-tae Kim
%A Hyun-dong Paik
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 9
%P 816-824
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600234

TY - JOUR
T1 - Antimelanogenic effects of Inula britannica flower petal extract fermented by Lactobacillus plantarum KCCM 11613P
A1 - Eun-hye Park
A1 - Won-young Bae
A1 - Jae-yeon Kim
A1 - Kee-tae Kim
A1 - Hyun-dong Paik
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 9
SP - 816
EP - 824
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600234


Abstract: 
The inhibitory effects of Lactobacillus plantarum-fermented and non-fermented Inula britannica extracts on the tyrosinase activity were comparatively investigated to examine whether and how they improve the whitening activity, and the contents of total flavonoids and polyphenolics as bioactive compounds were determined. The skin whitening activity using in vitro or ex vivo tyrosinase and L-3,4-dihydroxyphenylalanine (L-DOPA) staining was examined. The total flavonoid content (TFC) was increased by 13.4% after 72 h-fermentation. The viabilities of the B16F10 cells treated with the fermented and non-fermented control extracts were 100.26% and 92.15% at 500 µg/ml, respectively. In addition, the inhibition of tyrosinase activity was increased by the fermented samples from 29.33% to 41.74% following fermentation for up to 72 h. The tyrosinase activity of the untreated control group was increased to 145.69% in B16F10 cells. The results showed that I. britannica fermented by L. plantarum dose-dependently inhibited tyrosinase activity, which was stimulated by α-melanocyte stimulating hormone. These results suggest that lactic fermented I. britannica extracts can be used as effective skin-whitening materials.

植物乳杆菌KCCM 11613P发酵的旋覆花花瓣提取物的抗黑素生成的作用

目的:研究植物乳杆菌发酵对旋覆花花瓣提取物对酪氨酸酶的抑制效果,为开发旋覆花提取物作为潜在的皮肤增白成分提供依据。
创新点:发现旋覆花植物乳杆菌发酵的提取物可以作为有效的美白材料。
方法:比较研究了植物乳杆菌发酵的旋覆花花瓣提取物对酪氨酸酶活性的抑制作用,并测定了提取物中总黄酮和多酚类化合物的含量。通过体外酪氨酸酶和左旋多巴(L-DOPA)染色来测定其对皮肤的美白活性。
结论:旋覆花花瓣经过72小时的发酵后,其提取物中总黄酮含量提高13.4%。采用500 µg/ml发酵和未发酵的提取物处理B16F10细胞,细胞活性分别为100.26%和92.15%。此外,发酵72小时后,该提取物对酪氨酸酶活性的抑制率由29.33%上升到41.74%。未处理的对照组B16F10细胞酪氨酸酶活性增加到145.69%。结果表明,旋覆花发酵提取物对酪氨酸酶活性呈剂量依赖性抑制是促黑激素(α-MSH)的刺激引起。旋覆花植物乳杆菌发酵的提取物可以作为有效的美白材料。

关键词:旋覆花;类黄酮;植物乳杆菌;抗氧化剂;酪氨酸酶抑制剂

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bai, N., Zhou, Z., Zhu, N., et al., 2005. Antioxidative flavonoids from the flower of Inula britannica. J. Food Lipids, 12(2):141-149.

[2]Bourdichon, F., Casaregola, S., Farrok, C., et al., 2012. Food fermentations: microorganisms with technological beneficial use. Int. J. Food Microbiol., 154(3):87-97.

[3]Chakraborty, A.K., Platt, J.T., Kim, K.K., et al., 1996. Polymerization of 5,6-dihydroxyindole-2-carboxylic acid to melanin by the pmel 17/Silver locus protein. Eur. J. Biochem., 236(1):180-188.

[4]Chan, Y.Y., Kim, K.H., Cheah, S.H., 2011. Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J. Ethnopharmacol., 137(3):1183-1188.

[5]Dong, J., Zhao, L., Cai, L., et al., 2014. Antioxidant activities and phenolics of fermented Bletilla formosana with eight plant pathogen fungi. J. Biosci. Bioeng., 118(4):396-399.

[6]Dueñas, M., Fernández, D., Hernández, T., et al., 2005. Bioactive phenolic compounds of cowpeas (Vigna sinensis L.). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. J. Sci. Food Agric., 85(2):297-304.

[7]Gilchrest, B.A., Eller, M.S., 1999. DNA photodamage stimulates melanogenesis and other photoprotective responses. J. Invest. Dermatol. Symp. Proc., 4(1):35-40.

[8]Gillbro, J.M., Olsson, M.J., 2011. The melanogenesis and mechanisms of skin-lightening agents—existing and new approaches. Int. J. Cosmet. Sci., 33(3):210-221.

[9]Goodall, T., Buffey, J.A., Rennie, I.G., 1994. Effect of melanocyte stimulating hormone on human cultured choroidal melanocytes, uveal melanoma cells, and retinal epithelial cells. Invest. Ophth. Vis. Sci., 35(3):826-837.

[10]Hocker, T.L., Singh, M.K., Tsao, H., 2008. Melanoma genetics and therapeutic approaches in the 21st century: moving from the benchside to the bedside. J. Invest. Dermatol., 128(11):2575-2595.

[11]Huang, M.H., Tai, H.M., Wang, B.S., et al., 2013. Inhibitory effects of water extract of Flos Inulae on mutation and tyrosinase. Food Chem., 139(1-4):1015-1020.

[12]Khan, A.L., Hussain, J., Hamayun, M., et al., 2010. Secondary metabolites from Inula britannica L. and their biological activities. Molecules, 15(3):1562-1577.

[13]Kim, J.S., Lee, J.H., Surh, J., et al., 2016. Aglycone isoflavones and exopolysaccharides produced by Lactobacillus acidophilus in fermented soybean paste. Prev. Nutr. Food Sci., 21(2):117-123.

[14]Kim, Y.J., Uyama, H., 2005. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci. CLMS, 62(15):1707-1723.

[15]Kubo, I., Chen, Q.X., Nihei, K., 2003. Molecular design of antibrowning agents: antioxidative tyrosinase inhibitors. Food Chem., 81(2):241-247.

[16]Lee, M.H., Lin, Y.P., Hsu, F.L., et al., 2006. Bioactive constituents of Spatholobus suberectus in regulating tyrosinase-related proteins and mRNA in HEMn cells. Phytochemistry, 67(12):1262-1270.

[17]Lee, N.K., Jeewanthi, R.K.C., Park, E.H., et al., 2016. Physicochemical and antioxidant properties of Cheddar-type cheese fortified with Inula britannica extract. J. Dairy Sci., 99(1):83-88.

[18]Lin, J.Y., Tang, C.Y., 2007. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem., 101(1):140-147.

[19]Liu, C.T., Erh, M.H., Lin, S.P., et al., 2016. Enrichment of two isoflavone aglycones in black soymilk by Rhizopus oligosporus NTU 5 in a plastic composite support bioreactor. J. Sci. Food Agric., 96(11):3779-3786.

[20]Más, J.S., Gerritsen, I., Hahmann, C., et al., 2003. Rate limiting factors in melanocortin 1 receptor signalling through the cAMP pathway. Pigment Cell Res., 16(5):540-547.

[21]Provance, D.W., Wei, M., Ipe, V., et al., 1996. Cultured melanocytes from dilute mutant mice exhibit dendritic morphology and altered melanosome distribution. Proc. Natl. Acad. Sci. USA, 96:14554-14558.

[22]Smit, N., Vicanova, J., Pavel, S., 2009. The hunt for natural skin whitening agents. Int. J. Mol. Sci., 10(12):5326-5349.

[23]Torino, M.I., Limón, R.I., Martínez-Villaluenga, C., et al., 2013. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem., 136(2):1030-1037.

[24]Tsai, C.C., Chan, C.F., Huang, W.Y., et al., 2013. Applications of Lactobacillus rhamnosus spent culture supernatant in cosmetic antioxidation, whitening and moisture retention applications. Molecules, 18(11):14161-14171.

[25]Videira, I.F.D.S., Moura, D.F., Magina, S., 2013. Mechanisms regulating melanogenesis. An. Bras. Dermatol., 88(1):76-83.

[26]Wang, B., Lin, S.Y., Shen, Y.Y., et al., 2015. Pure total flavonoids from Citrus paradisi Macfadyen act synergistically with arsenic trioxide in inducing apoptosis of Kasumi-1 leukemia cells in vitro. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(7):580-585.

[27]Wang, K.H., Lin, R.D., Hsu, F.L., et al., 2006. Cosmetic applications of selected traditional Chinese herbal medicines. J. Ethnopharmacol., 106(3):353-359.

[28]Wang, X., Wei, Y., Yuan, S., et al., 2006. Potential anticancer activity of litchi fruit pericarp extract against hepatocellular carcinoma in vitro and in vivo. Cancer Lett., 239(1):144-150.

[29]Wu, S.C., Su, Y.S., Cheng, H.Y., 2011. Antioxidant properties of Lactobacillus-fermented and non-fermented Graptopetalum paraguayense E. Walther at different stages of maturity. Food Chem., 129(3):804-809.

[30]Xing, Y., Cai, L., Yin, T.P., et al., 2016. Improving the antioxidant activity and enriching salvianolic acids by the fermentation of Salvia miltiorrhizae with Geomyces luteus. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 17(5):391-398.

[31]Yang, J., Ji, Y., Park, H., Lee, J., et al., 2014. Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel.). Int. J. Food. Microbiol., 191:164-171.

[32]Yang, S., Fan, R., Shi, Z., et al., 2015. Identification of a novel microRNA important for melanogenesis in alpaca (Vicugna pacos). J. Anim. Sci., 93(4):1622-1631.

[33]Zhang, J.Q., Shi, L., Xu, X.N., et al., 2014. Therapeutic detoxification of quercetin against carbon tetrachloride-induced acute liver injury in mice and its mechanism. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 15(12):1039-1047.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE