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1  Light field imaging processing
1.1  Light field super-resolution
1.1.1  Light field data structure based methods
The light field (LF) data structure based methods focus mainly on the use and exploration of spatial and angular information.
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]Considering the trade-off between spatial and angular resolution, Georgiev et al. (2006) proposed that sparse sampling is beneficial to obtain better spatial resolution for integral photography. Bishop et al. (2009) first proposed LF super-resolution (LFSR) reconstruction. They performed LFSR reconstruction of down- sampled images collected in different directions from the microlens arrays of the traditional plenoptic camera. They applied the blind deconvolution method (BDM) to restore the LF. Bishop and Favaro (2012) introduced a novel approach that uses the Bayesian framework to reconstruct more LF information in super-resolution. Wanner and Goldluecke (2014) proposed a fully continuous model for variational super-resolution view synthesis.They also introduced a variational model for super-resolution view synthesis to further improve the mathematical framework for variational LF analysis. Mitra and Veeraraghavan (2012) presented a Gaussian mixture model (GMM) to address the denoising and spatial and angular super-resolution of LFs. Zhang ZT et al. (2015) presented a novel phase-based framework that can derive high-quality 4D LF from baseline stereo pairs. Zhang FL et al. (2017) introduced a highly autonomous system for LF editing relying on patch-based image synthesis methods. They also demonstrated a layered approach for the central view and a way for viewpoint consistency. Rossi and Frossard (2018) presented a novel LFSR algorithm to increase the resolution of the total views, requiring only the disparity estimation process. Based on the epipolar plane image (EPI) geometry, Zhang S et al. (2021) proposed to learn the LF sub-pixel details end-to-end at a high spatial resolution for LF spatial super-resolution and achieved superior results.
1.1.2  Learning-based methods
Since deep learning has demonstrated its superiority in data representation, a growing number of convolution neural network (CNN) based super-resolution methods have been introduced. These methods primarily concentrate on learning the relationship between high-resolution and low-resolution images.
[bookmark: OLE_LINK5][bookmark: OLE_LINK1][bookmark: OLE_LINK2]Specifically, Dong et al. (2014) first applied CNN to the image super-resolution field and proposed a super- resolution CNN reconstruction algorithm. The algorithm takes the pre-processed low-resolution (LR) image as the input of the network and directly learns the relationship between the input and output. A convolution operation realizes the main processes of feature extraction, nonlinear mapping, and reconstruction. Wang ZW et al. (2015) combined sparse coding with CNN and proposed a cascade sparse coding based network (CSCN), which was effectively trained in the end-to-end cascade structure, showing advantages in accuracy and visual comfort of super-resolution. Kim JW et al. (2015a, 2015b) combined residual learning with CNN to reduce the number of network parameters, to increase the speed of super-resolution, and to solve the gradient dispersion problem with the deepening of network layers. Based on the traditional deep convolutional neural network (DCNN), Yoon et al. (2015) proposed to upsample the spatial and angular resolution of the LF image via the data-driven learning method. It can generate high-resolution subaperture images efficiently. Similarly, Yoon et al. (2017) proposed a spatial super-resolution network and an angular super-resolution network based on 4D LF data analysis. These networks were trained end-to-end. In addition, to reduce the complexity of super-resolution operations in the high-resolution (HR) space, Shi et al. (2016) presented a novel CNN framework with the capability of displaying 1080p super-resolution videos in real time without a high-performance processor. Kalantari et al. (2016) proposed a method using two sequential CNNs to achieve balance between spatial and angular resolution in a LF super-resolution task. Similarly, Gul and Gunturk (2018) presented a supervised learning LFSR enhancement method with two independent subnetworks. Compared with other subnetwork methods, the proposed networks have low computational complexity, and the network structure has only three layers. Wu GC et al. (2017) converted the LF reconstruction problem into a CNN-based angle to solve the problem, as the EPI in LF data has a clear texture structure. Furthermore, Wang YL et al. (2018) applied CNN to model the correlation between adjacent subaperture images and proposed a bidirectional recurrent CNN for super-resolution reconstruction. Lim et al. (2017) proposed a novel multiscale network that can share the parameters for different scales in an LFSR. Yuan et al. (2018) introduced a combined super-resolution DCNN, including a single-image super-resolution CNN and an EPI enhancement CNN. The core of these two networks for super-resolution is to improve the spatial resolution of subaperture images and restore the LF structure. In addition, Yeung et al. (2019) introduced novel end-to-end CNN hourglass shape models for super-resolution reconstruction of LF images. Zhang S et al. (2019) proposed a residual CNN to enhance the spatial resolution of LF images. The network can inherit the LF structure information and infer subpixel information at a high resolution. Farrugia and Guillemot (2020) presented a DCNN LFSR approach that can restore the LF across all angular views. Wu GC et al. (2019) trained the CNN with a set of sheared EPIs to increase the super-resolution performance. Wang YQ et al. (2020) applied an interactive strategy to simultaneously process spatial and angular features for an LFSR. Ko et al. (2021) proposed a spatial–angular learning super-resolution algorithm that can efficiently improve low-resolution LF images. Wang YQ et al. (2021) proposed a deformable convolution super-resolution network, which overcame the challenge of incorporating angular information due to LF 
disparity.
1.1.3  Multi-sensor-based methods 
[bookmark: OLE_LINK29][bookmark: OLE_LINK30][bookmark: OLE_LINK6][bookmark: OLE_LINK7]Multi-sensor-based methods usually combine a high-resolution digital single lens reflex (SLR) camera and light field camera (LFC) and constitute a new hybrid imaging system for super-resolution.
[bookmark: OLE_LINK8][bookmark: OLE_LINK9]Based on traditional and LF imaging, Wu JD et al. (2015) introduced an innovative LFSR hybrid imaging system that relies on the improved match patch algorithm and the dictionary learning approach. Boominathan et al. (2014) proposed a hybrid imaging system and a simple patch-based algorithm for super-resolution without any camera calibration information. Nevertheless, the patch-based algorithm easily blurs the high-frequency details. Therefore, by analyzing the LF structure, Zhao MD et al. (2018) proposed a high-frequency compensation super-resolution scheme that better avoids the blur of high-frequency details. Alam and Gunturk (2018) proposed a hybrid stereo imaging system, including an LFC and an Allied Vision Technologies (AVT) Mako G095C camera. High-resolution images captured by the AVT camera were used to increase the spatial resolution of subaperture images. Similarly, Zheng et al. (2017) proposed a hybrid system for super-resolution, including an LFC and a high-resolution camera. The images captured by the high-resolution camera were considered as a reference to super-resolve the low-resolution LF images. Based on a little increase in weight and cost, Wang YW et al. (2017) proposed a concept for an LF lens attachment consisting of eight low-resolution low-quality cameras that can convert a digital single lens reflex (DSLR) camera and lens into an LFC. Wang X et al. (2016) presented a hybrid imaging system in which the LFC and DSLR cameras can share the same optical path.
Finally, to compare the results of the algorithms on three datasets in a comprehensive way, we adopt two metrics, including the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The quantitative comparison results are shown in Tables S1 and S2 (7×7 angular resolution, ×2 LF spatial super-resolution).
Table S1  The peak signal-to-noise ratio comparision on three LF datasets
Dataset
PSNR (dB)

Bicubic
Lim et al. (2017)
Rossi and Frossard (2018)
Wang YL 
et al. (2018)
Yeung et al. (2019)
Zhang S 
et al. (2019)
Wang YQ 
et al. (2020)
HCI1
35.82
37.10
38.04
36.46
41.31
41.02
41.50
HCI2
31.88
32.72
34.61
33.63
36.38
36.40
36.36
EPFL
31.51
32.29
32.46
32.70
35.21
34.40
35.69

Table S2  The structural similarity comparision on three LF datasets
Dataset
SSIM

Bicubic
Lim et al. (2017)
Rossi and Frossard (2018)
Wang YL 
et al. (2018)
Yeung et al. (2019)
Zhang S 
et al. (2019)
Wang YQ 
et al. (2020)
HCI1
0.941
0.954
0.964
0.965
0.977
0.975
0.978
HCI2
0.901
0.918
0.942
0.932
0.953
0.957
0.957
[bookmark: OLE_LINK23][bookmark: OLE_LINK33]EPFL
0.902
0.925
0.930
0.935
0.951
0.948
0.960









PSNR and SSIM metrics are widely used in LFSR. These two metrics determine whether the super-
resolution image is good or bad. The definition of PSNR is given in Eqs. (S1) and (S2). The definition of SSIM is given in Eq. (S3).


                                                       (S1)

                                                     (S2)

                                           (S3)

where x is the input image, y is the super-resolution image, M and N are the width and height of these two images respectively, A represents the gray level in images, μx and μy are the pixel density averages, σx and σy are the standard deviations, σxy is the covariance of the images, and C1 and C2 are constants.
1.2  Depth estimation
1.2.1  Data-based methods
1. EPI-based methods
The essence of EPI is a 2D slice image of 4D LF data. The slope of EPI is the different positions of the same object in different views. Thus, the depth map estimation method depends on the use of different optimization techniques to measure the slope of EPI.
Wanner and Goldluecke (2012b) introduced a data item with a new expression form and estimated the depth information based on the total variation. Meanwhile, they introduced continuous optimization to the process of 4D LF data, and the local depth information obtained in the dominant direction of the EPI was continuously mapped to obtain the global depth map.
However, this algorithm cannot estimate the accurate depth information in the presence of specular reflection. In addition, LFCs have a microlens array, and the captured LF data allow the modification of both focus and perspective viewpoints. Tao et al. (2013) leveraged the microlens array to obtain defocus and corresponding depth cues, and proposed a controllable depth image acquisition method based on x-u 2D EPI 
analysis.
Furthermore, to evaluate the influence of occlusion on depth estimation, Tosic and Berkner (2014) analyzed the EPI structure and converted the depth estimation task into computing the angle of rays for each pixel in a given EPI. Wanner and Goldluecke (2014) presented a new concept of local data term tailored to the continuous structure of LFs, and analyzed the EPI for disparity estimation. Krolla et al. (2014) introduced the concept of spherical LFs to conveniently construct EPIs to quickly estimate the disparity. Li JQ et al. (2015) explored the relationship between the LF structure information and the reliability of EPI, and introduced a linear system with two matrix forms, which can considerably enhance the global consistency in depth map acquisition. Diebold et al. (2016) proposed a new structural tensor with a low estimate of orientation error for depth estimation, which can effectively deal with the problem of reduced reliability in depth estimation in heterogeneous LFs. Zhang S et al. (2016) adopted the method of integrating the spinning parallelogram operator (SPO) in the 2D EPI and the depth estimation framework to keep the correct depth information. Kim C et al. (2013) proposed a course-to-coarse depth estimation scheme based on continuous EPI calculations. Johannsen et al. (2016) applied the idea of sparse coding to learn the EPI orientation–depth relationship, which improved the performance of depth estimation in accuracy and robustness. Zhang YB et al. (2017) introduced a reliability measure to remove the interference of unreliable pixels and improve the detail and overall performance of the depth map. To accurately obtain the depth information of the occlusion edge, Sheng et al. (2018) constructed a specific depth estimation function and proposed a method to calculate EPI differences in multiple directions. Schilling et al. (2018) proposed a new hybrid framework for the depth information solution, which unifies the depth information solution and occlusion information processing, ensuring that all information is effectively used.
2. LF image based methods
[bookmark: OLE_LINK10][bookmark: OLE_LINK11][bookmark: OLE_LINK12][bookmark: OLE_LINK13][bookmark: OLE_LINK35][bookmark: OLE_LINK36][bookmark: OLE_LINK16]Jiang et al. (2018) proposed a depth estimation algorithm that can restore the whole view from a sparse set of views under occlusion conditions, and the continuity of the depth information can be kept intact. Heber and Pock (2014) proposed a new type of matching term and transformed the depth estimation problem into a multiple view stereo matching one. The distortion of the image of the microlens array leads to inaccurate depth map acquisition. Jeon et al. (2015) proposed an energy minimization formula to eliminate the distortion effect. Lin et al. (2015) proposed a new data consistency measure for depth estimation by analyzing the LF focal stack. Furthermore, based on the separation of the foreground and background for different focus planes, Lee and Park (2017) proposed an LF depth estimation method with high computational efficiency by accumulating binary maps. Chen C et al. (2014) introduced a bilateral consistency metric for LF stereo matching to estimate the depth under occlusion. Tao et al. (2015) proposed a three-stage iterative algorithm based on LF data analysis to eliminate the inaccuracy of depth information acquisition caused by specular highlights. Wang TC et al. (2016a) proposed a robust depth estimation algorithm for occluded edges by taking advantage of LF pixels to maintain photo consistency after LF refocusing. The special structure of the microlens array makes it possible to obtain additional defocus, correspondence, and shadow information in single image acquisition. At the same time, it is better to obtain the depth information of continuous dense areas. As shown in Fig. S1, Tao et al. (2017) proposed a multistage consistency depth estimation framework, including photo consistency, depth consistency, and shadow consistency. Williem and Park (2016) extended the application of correspondence and defocus cues, and then proposed a depth estimation framework that can effectively reduce noise interference based on the angular entropy metric and the adaptive defocus response. Tao et al. (2016) introduced a novel photo consistent LF depth estimation framework, which was available for glossy surfaces. Similarly, relying on deriving a spatially varying bidirectional reflectance distribution function (SVBRDF) invariant theory, Wang TC et al. (2016b) proposed an LF depth estimation method for recovering 3D shapes from LFCs. Chen J et al. (2018) analyzed the influence of the initial label confidence map and edge strength weights, which increased the accuracy of depth estimation. Honauer et al. (2017) constructed a densely sampled 4D LF dataset, including highly accurate disparity ground truth, Heidelberg Collaboratory for image processing2 (HCI2). Williem et al. (2018) presented two novel data costs, constrained adaptive defocusing cost (CAD) and constrained angle entropy cost (CAE), which were robust to occlusion and noise in depth estimation. Zhu et al. (2017) solved the problem about the occluder-consistency between the spatial and angle spaces. They also proposed a depth estimation algorithm that can reliably maintain the occlusion boundaries. Tian et al. (2017) proposed an algorithm to solve the problem of depth restoration in scattering media, such as water and fog. Mishiba (2020) introduced the offline viewpoint selection method and a fast weighted media filter into depth estimation, which greatly accelerated the depth estimation.
Fig. S1  The framework of depth estimation based on LF information (Tao et al., 2017)









1.2.2  Learning-based methods
In recent years, with the rapid development of deep learning technology, researchers have begun to apply deep learning technology to the LF depth estimation algorithm.
Heber and Pock (2016) trained a two-dimensional hyperplane CNN model with LF data, which can effectively predict the correspondence between the 4D LF data and the depth information it contains. Meanwhile, they set up a new dataset containing more synthetic LF information for experimental research. Based on some synthetic LF images and a CNN, Feng et al. (2018) used CNN to learn the correlation between a part of the pixels in the vertical and horizontal EPIs. Then, the correlation model between the learned pixels was used to estimate the depth of each image. Shin et al. (2018) considered the geometry of the LF polarities and used a combination of a multi-stream network and a merging network learning the spatial and angle information to obtain an estimated depth map. Jeon et al. (2019) proposed an auto pipeline, which can obtain the optimal depth label with high quality. At the pixel level, Zhou et al. (2019) used a CNN to learn the focal stack to obtain relevant depth cues for depth estimation. The final clues for depth estimation were mainly in two parts: depth semantic features and local structure information. Li Y et al. (2021) integrated the LF angular information and an attention module to propose a lightweight network, which can accurately complete the depth estimation of occluded edges.
Finally, to compare the results of the algorithms on the dataset (Honauer et al., 2017) in a comprehensive way, we provided two metrics, including mean square error (MSE) (×100) and BadPix (0.07). The quantitative comparison results are shown in Tables S3 and S4.
The MSE (×100) in depth estimation can be quantified as


                                                         (S4)
BadPix (0.07) is quantified as


                                           (S5)

Herein d is the estimated disparity map, gt is the ground truth, and M is an evaluation mask.

[bookmark: _Hlk87364974]Table S3  MSE performance evaluation on the synthetic images
	Category
	Image
	MSE (×100)
	

	
	
	Johannsen et al. (2016)
	Jeon et al. (2015)
	Sheng et al. (2018)
	Zhang S et al. (2016)
	Wanner and Goldluecke (2012a)
	Shin 
et al. (2018)
	Lee and Park (2017)
	Jeon 
et al. (2019)

	[bookmark: _Hlk107478887]Stratified
	Backgammon
	  9.56
	13.01
	21.59
	  4.59
	20.75
	–
	  5.67
	  6.89

	


Training






	Dots
	  5.73
	  5.68
	  3.30
	  5.24
	  6.66
	–
	  2.09
	  8.34

	
	Pyramids
	  0.03
	  0.27
	  0.10
	  0.04
	  0.02
	–
	  0.03
	  0.04

	
	Stripes
	  2.67
	17.45
	  8.13
	  6.96
	  6.10
	–
	  1.32
	  1.38

	
	Boxes
	  8.72
	17.43
	  9.85
	  9.11
	12.54
	–
	  8.90
	12.31

	
	Cotton
	  2.25
	  9.17
	  1.07
	  1.31
	  4.51
	–
	  0.76
	  1.16

	
	Dino
	  1.23
	  1.16
	  1.14
	  0.31
	  2.10
	–
	  0.66
	  0.75

	
	Sideboard
	  2.85
	  5.07
	  2.30
	  1.02
	  3.86
	–
	  1.16
	  2.85

	
	Bedroom
	  0.57
	  0.47
	  0.63
	  0.21
	–
	–
	  0.48
	–

	
	Bicycle
	  8.52
	11.73
	  7.67
	  5.57
	–
	–
	  5.81
	–

	
	Herbs
	24.70
	21.34
	22.20
	11.23
	–
	–
	15.46
	–

	
	Origami
	  5.01
	  6.76
	  2.30
	  2.03
	–
	–
	  3.32
	–

	Average
	
	  5.99
	  9.13
	  6.69
	  3.97
	  7.07
	1.75
	  3.80
	  4.22



Table S4  BadPix performance evaluation on the synthetic images
	Category
	Image
	[bookmark: _GoBack]BadPix (0.07)

	
	
	Johannsen et al. (2016)
	Jeon et al. (2015)
	Sheng et al. (2018)
	Zhang S et al. (2016)
	Shin et al. (2018)
	Lee and Park (2017)
	Jeon et al. (2019)

	[bookmark: _Hlk108426159]Stratified
	Backgammon
	21.33
	  5.52
	19.01
	  3.78
	  3.50
	10.31
	  7.14

	



Training




	Dots
	62.00
	  2.90
	  5.82
	16.27
	  2.49
	12.84
	  7.96

	
	Pyramids
	  0.86
	12.35
	  3.17
	  0.86
	  0.16
	  0.55
	  0.11

	
	Stripes
	25.81
	35.74
	18.41
	14.99
	  2.46
	19.12
	  2.96

	
	Boxes
	24.45
	23.02
	26.52
	15.89
	12.30
	27.15
	34.09

	
	Cotton
	13.93
	  7.83
	  6.22
	  2.59
	  0.45
	  5.01
	  2.43

	
	Dino
	10.35
	19.03
	14.91
	  2.18
	  1.21
	  7.55
	  4.39

	
	Sideboard
	18.38
	21.99
	18.50
	  9.30
	  4.46
	13.92
	13.25

	
	Bedroom
	13.59
	13.86
	17.57
	  4.86
	  2.30
	  5.77
	–

	
	Bicycle
	25.21
	19.79
	21.56
	10.91
	  9.61
	19.66
	–

	
	Herbs
	47.08
	18.11
	36.83
	  8.26
	11.00
	14.75
	–

	
	Origami
	28.90
	14.18
	22.43
	11.70
	  5.81
	22.86
	–

	Average
	
	24.32
	16.19
	17.58
	8.47
	  4.65
	13.29
	  9.04


2  Tasks and applications
[bookmark: _Hlk87381659]2.1  Face recognition, detection, and light field face dataset
2.1.1  Texture-based methods
Kim SY et al. (2014) proposed to distinguish real and deceptive face samples by computing edge features and ray difference features. The main deceptive samples in their performance evaluation included printed photos and an IPAD. By exploiting the relationship between color and angle in LF images, Sepas-Moghaddam et al. (2018) proposed an effective descriptor, LF angular local binary patterns (LFALBP), for face detection relying on disparity exploitation. In addition, based on the acquired LF data, visual geometry group (VGG)-16 model, and long short-term memory (LSTM) network, Sepas-Moghaddam et al. (2020) presented an advanced face recognition framework, as shown in Fig. S2. First, they analyzed the LF data and selected some subaperture images. Second, they used VGG-16 to train the feature descriptors corresponding to each subaperture image. Finally, the trained feature descriptors were input to LSTM for classification.
Fig. S2  Face recognition framework based on subaperture image analysis (Sepas-Moghaddam et al., 2020)












2.1.2  Focus and depth based methods
[bookmark: OLE_LINK39][bookmark: OLE_LINK40][bookmark: OLE_LINK41]Raghavendra et al. (2013a) proposed a new scheme for face recognition by selecting the best focused face image from all focus images, and built a face recognition dataset using both an LFC and a traditional camera. Raghavendra et al. (2013b) effectively combined the super-resolution reconstruction algorithm with the discrete wavelet transform technology to improve the resolution of multiscale depth images, enhancing the face recognition ability in wide area scene monitoring. In addition, Zhao BQ et al. (2020) proposed an automatic face recognition framework algorithm that does not need extra manual management. At the same time, by analyzing the variation of focus between images rendered at different depths, they proposed a method based on posteriori refocusing to avoid an attack in face recognition. Similarly, to improve the overall performance, Raghavendra et al. (2016) explored the additional information available from different depth images in LFC using feature extraction and various super-resolution schemes, as shown in Fig. S3. Based on LF imaging technology and exploiting the available disparity information, Ji et al. (2016) presented a light field histogram of gradient (LFHoG) based method for face detection and achieved 99.75% accuracy. In addition, Xie et al. (2017) extracted three independent features from refocused images to correctly recognize face attacks. Similarly, Chiesa and Dugelay (2018) found useful information on the distance between the object and LFC to avoid face attacks, and thereby proposed a novel method for face detection by analyzing LF image properties. Sepas-Moghaddam et al. (2021) proposed a capsule network that can learn the angular part–whole relations of LF 2D subaperture images for face recognition in the wild.Fig. S3  The face recognition framework based on different depth images (Raghavendra et al., 2016)
















[bookmark: OLE_LINK17][bookmark: OLE_LINK18]In addition, several papers (Raghavendra et al., 2013a, 2015; Kim SY et al., 2014; Sepa-Moghaddam et al., 2018, 2020) reported a large number of LF face datasets, but the problem was that most of these data were not available or were used only for individual studies. Currently, the existing public benchmarks used mainly for face recognition include the Gjøvik University College (GUC) light field face artefact database (GUC-LiFFAD) (Raghavendra et al., 2015) and Instituto Superior Técnico (IST) lenslet light field face spoofing database (IST LLFFSD) (Sepas-Moghaddam et al., 2018).
GUC-LiFFAD was the first LF dataset for avoiding face attacks using Lytro. It consists mainly of two parts: normal face LF data and artefact face LF data. This dataset consists of a set of greyscale 2D images focused at different depths, notably exploiting a posteriori refocusing supported by LF imaging. Meanwhile, the samples in the GUC-LiFFAD dataset are widely representative, because there are mainly 80 relevant persons of different genders, ages, etc. However, the images in the dataset do not provide the original light field raw (LFR) information, and this dataset is limited for later research. IST LLFFSD is another widely used dataset for face recognition, including 50 subjects, 100 real images, and 600 face spoofing attack images. Specifically, it is composed mainly of three types of images: raw LF images, 2D rendered images, and depth maps. However, the difference between Raghavendra et al. (2015) and Sepas-Moghaddam et al. (2018) is that in the latter, LFC used a higher resolution, while instead of greyscale images, the work by Sepas-Moghaddam et al. (2018) is composed of 2D RGB rendered face images. In addition, the work of Sepas-Moghaddam et al. (2018) is rich in types (Raghavendra et al., 2015), and the comparison of the two datasets is shown in Table S5.

Table S5  Overview of publicly avalable LF-based face artefact datasets 
	Year
	Number of subjects
	Number of images
	Type of content
	Paper
	Wrapped paper
	Mobile
	Tablet
	Laptop
	3D mask

	2015
	80
	4826
	2D rendered from LF
	√
	×
	×
	√
	×
	×

	2017
	50
	700
	LF+2D+depth
	√
	√
	√
	√
	√
	×
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