Full Text:  <353>

CLC number: 

On-line Access: 2023-08-01

Received: 2023-08-01

Revision Accepted: 2023-08-01

Crosschecked: 0000-00-00

Cited: 0

Clicked: 417

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE 

Accepted manuscript available online (unedited version)


Highly specific characterization and discrimination of monosodium urate crystals in gouty arthritis based on aggregation-induced emission luminogens


Author(s):  Wenjuan Wang, Guiquan Zhang, Ziyi Chen, Hanlin Xu, Bohan Zhang, Rong Hu, Anjun Qin, Yinghui Hua

Affiliation(s):  Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China; School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China

Corresponding email(s):  hurong@usc.edu.cn, msqinaj@scut.edu.cn, hua_cosm@aliyun.com

Key Words:  gout; monosodium urate; hydroxyapatite; TPE-Ketoalkyne; aggregation-induced emission; confocal laser scanning microscope imaging


Share this article to: More

Wenjuan Wang, Guiquan Zhang, Ziyi Chen, Hanlin Xu, Bohan Zhang, Rong Hu, Anjun Qin, Yinghui Hua. Highly specific characterization and discrimination of monosodium urate crystals in gouty arthritis based on aggregation-induced emission luminogens[J]. Journal of Zhejiang University Science ,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1007/s42242-023-00104-X

@article{title="Highly specific characterization and discrimination of monosodium urate crystals in gouty arthritis based on aggregation-induced emission luminogens",
author="Wenjuan Wang, Guiquan Zhang, Ziyi Chen, Hanlin Xu, Bohan Zhang, Rong Hu, Anjun Qin, Yinghui Hua",
journal="Journal of Zhejiang University Science ",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1007/s42242-023-00104-X"
}

%0 Journal Article
%T Highly specific characterization and discrimination of monosodium urate crystals in gouty arthritis based on aggregation-induced emission luminogens
%A Wenjuan Wang
%A Guiquan Zhang
%A Ziyi Chen
%A Hanlin Xu
%A Bohan Zhang
%A Rong Hu
%A Anjun Qin
%A Yinghui Hua
%J Journal of Zhejiang University SCIENCE
%P
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1007/s42242-023-00104-X"

TY - JOUR
T1 - Highly specific characterization and discrimination of monosodium urate crystals in gouty arthritis based on aggregation-induced emission luminogens
A1 - Wenjuan Wang
A1 - Guiquan Zhang
A1 - Ziyi Chen
A1 - Hanlin Xu
A1 - Bohan Zhang
A1 - Rong Hu
A1 - Anjun Qin
A1 - Yinghui Hua
J0 - Journal of Zhejiang University Science
SP -
EP -
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1007/s42242-023-00104-X"


Abstract: 
Existing technologies used to detect monosodium urate (MSU) crystals for gout diagnosis are not ideal due to their low sensitivity and complexity of operation. The purpose of this study was to explore whether aggregation-induced emission luminogens (AIEgens) can be used for highly specific imaging of MSU crystals to assist in the diagnosis of gout. First, we developed a series of luminogens (i.e., tetraphenyl ethylene (TPE)-NH2, TPE-2NH2, TPE-4NH2, TPE-COOH, TPE-2COOH, TPE-4COOH, and TPE-Ketoalkyne), each of which was then evenly mixed with MSU crystals. Next, optimal fluorescence imaging of each of the luminogens was characterized by a confocal laser scanning microscope (CLSM). This approach was used for imaging standard samples of MSU, hydroxyapatite (HAP) crystals, and mixed samples with 1:1 mass ratio of MSU/HAP. We also imaged samples from mouse models of acute gouty arthritis, HAP deposition disease, and comorbidities of interest. Subsequently, CLSM imaging results were compared with those of compensated polarized light microscopy (CPLM), and we assessed the biosafety of TPE-Ketoalkyne in the RAW264.7 cell line. Finally, CLSM time series and 3D imaging were performed on MSU crystal samples from human gouty synovial fluid and tophi. As a promising candidate for MSU crystal labeling, TPE-Ketoalkyne was found to detect MSU crystals accurately and rapidly in standard samples, animal samples, and human samples, and could precisely distinguish gout from HAP deposition disease. This work demonstrates that TPE-Ketoalkyne is suitable for highly specific and timely imaging of MSU crystals in gouty arthritis and may facilitate future research on MSU crystal-related diseases.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE