Full Text:  <287>

CLC number: 

On-line Access: 2024-05-10

Received: 2023-05-29

Revision Accepted: 2023-08-03

Crosschecked: 2024-05-10

Cited: 0

Clicked: 367

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Marcin CHOLEWIŃSKI

https://orcid.org/0000-0003-3323-6143

Szymon CHOWAŃSKI

https://orcid.org/0000-0002-5667-1781

Jan LUBAWY

https://orcid.org/0000-0003-4030-3471

Arkadiusz URBAŃSKI

https://orcid.org/0000-0003-4875-4541

Karolina WALKOWIAK-NOWICKA

https://orcid.org/0000-0002-2490-3576

Paweł MARCINIAK

https://orcid.org/0000-0002-4790-001X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B

Accepted manuscript available online (unedited version)


Short neuropeptide F in integrated insect physiology


Author(s):  Marcin CHOLEWIŃSKI, Szymon CHOWAŃSKI, Jan LUBAWY, Arkadiusz URBAŃSKI, Karolina WALKOWIAK-NOWICKA, Paweł MARCINIAK

Affiliation(s):  Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań 61-614, Poland

Corresponding email(s):  pmarcin@amu.edu.pl

Key Words:  Insect neuropeptide; Invertebrate neurobiology; Short neuropeptide F (sNPF); Feeding; Neurohormone


Share this article to: More <<< Previous Paper|Next Paper >>>

Marcin CHOLEWIŃSKI, Szymon CHOWAŃSKI, Jan LUBAWY, Arkadiusz URBAŃSKI, Karolina WALKOWIAK-NOWICKA, Paweł MARCINIAK. Short neuropeptide F in integrated insect physiology[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300355

@article{title="Short neuropeptide F in integrated insect physiology",
author="Marcin CHOLEWIŃSKI, Szymon CHOWAŃSKI, Jan LUBAWY, Arkadiusz URBAŃSKI, Karolina WALKOWIAK-NOWICKA, Paweł MARCINIAK",
journal="Journal of Zhejiang University Science B",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.B2300355"
}

%0 Journal Article
%T Short neuropeptide F in integrated insect physiology
%A Marcin CHOLEWIŃSKI
%A Szymon CHOWAŃSKI
%A Jan LUBAWY
%A Arkadiusz URBAŃSKI
%A Karolina WALKOWIAK-NOWICKA
%A Paweł MARCINIAK
%J Journal of Zhejiang University SCIENCE B
%P 389-409
%@ 1673-1581
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.B2300355"

TY - JOUR
T1 - Short neuropeptide F in integrated insect physiology
A1 - Marcin CHOLEWIŃSKI
A1 - Szymon CHOWAŃSKI
A1 - Jan LUBAWY
A1 - Arkadiusz URBAŃSKI
A1 - Karolina WALKOWIAK-NOWICKA
A1 - Paweł MARCINIAK
J0 - Journal of Zhejiang University Science B
SP - 389
EP - 409
%@ 1673-1581
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.B2300355"


Abstract: 
The short neuropeptide F (sNPF) family of peptides is a multifunctional group of neurohormones involved in the regulation of various physiological processes in insects. They have been found in a broad spectrum of species, but the number of isoforms in the precursor molecule varies from one to four. The receptor for sNPF (sNPFR), which belongs to the G protein-coupled receptor family, has been characterized in various insect orders and was shown to be an ortholog of the mammalian prolactin-releasing peptide receptor (PrPR). The sNPF signaling pathway interacts with other neurohormones such as insulin-like peptides, SIFamide, and pigment-dispersing factors (PDFs) to regulate various processes. The main physiological function of sNPF seems to be involved in the regulation of feeding, but the observed effects are species-specific. sNPF is also connected with the regulation of foraging behavior and the olfactory system. The influence of sNPF on feeding and thus energy metabolism may also indirectly affect other vital processes, such as reproduction and development. In addition, these neurohormones are involved in the regulation of locomotor activity and circadian rhythm in insects. This review summarizes the current state of knowledge about the sNPF system in insects.

昆虫生理中短神经肽F的功能研究进展

Marcin CHOLEWI?SKI, Szymon CHOWA?SKI, Jan LUBAWY, Arkadiusz URBA?SKI, Karolina WALKOWIAK-NOWICKA, Pawe? MARCINIAK
亚当密茨凯维奇大学生物学院动物生理学和发育生物学系,波兰波兹南,61-614
摘要:短神经肽F(sNPF)肽家族是参与调控昆虫体内各种生理过程的多功能神经激素。它们广泛分布于生物体中,但前体分子中的异构体数量因物种而异,从一个到四个不等。sNPF受体(sNPFR)属于G蛋白偶联受体家族,在多种昆虫目中已有表征,并被证明是哺乳动物泌乳素释放肽受体(PrPR)的同源物。sNPF信号通路通过与其他神经激素(例如类胰岛素肽、SIFamide和色素分散因子(PDFs))的相互作用以调控多种生理过程。其主要生理功能涉及摄食的调节,但观察到的效应因物种而异。sNPF还与觅食行为和嗅觉系统的调节相关。其对摄食及能量代谢的影响还可能间接影响其他重要过程,例如繁殖和发育。此外,这些神经激素还参与昆虫的运动活动和昼夜节律的调节。本文回顾并总结了昆虫中sNPF系统的现阶段研究进展。

关键词组:昆虫神经肽;无脊椎动物神经生物学;短神经肽F(sNPF);摄食;神经激素

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AmentSA, VelardeRA, KolodkinMH, et al., 2011. Neuropeptide Y-like signalling and nutritionally mediated gene expression and behaviour in the honey bee. Insect Mol Biol, 20(3):335-345.

[2]AmirMB, ShiY, CaoHH, et al., 2022. Short neuropeptide F and its receptor regulate feeding behavior in pea aphid (Acyrthosiphon pisum). Insects, 13(3):282.

[3]BassC, KatanskiC, MaynardB, et al., 2014. Conserved residues in RF-NH2 receptor models identify predicted contact sites in ligand‒receptor binding. Peptides, 53:278-285.

[4]BesteaL, PaoliM, ArrufatP, et al., 2022a. The short neuropeptide F regulates appetitive but not aversive responsiveness in a social insect. iScience, 25(1):103619.

[5]BesteaL, BriardE, CarcaudJ, et al., 2022b. The short neuropeptide F (sNPF) promotes the formation of appetitive visual memories in honey bees. Biol Lett, 18(2):20210520.

[6]BigotL, BeetsI, DubosMP, et al., 2014. Functional characterization of a short neuropeptide F-related receptor in a lophotrochozoan, the mollusk Crassostrea gigas. J Exp Biol, 217(16):2974-2982.

[7]BrockmannA, AnnangudiSP, RichmondTA, et al., 2009. Quantitative peptidomics reveal brain peptide signatures of behavior. Proc Natl Acad Sci USA, 106(7):2383-2388.

[8]CaersJ, PeymenK, van HielMB, et al., 2016. Molecular characterization of a short neuropeptide F signaling system in the tsetse fly, Glossina morsitans morsitans. Gen Comp Endocrinol, 235:142-149.

[9]CarlssonMA, DiesnerM, SchachtnerJ, et al., 2010. Multiple neuropeptides in the Drosophila antennal lobe suggest complex modulatory circuits. J Comp Neurol, 518(16):3359-3380.

[10]CarlssonMA, EnellLE, NässelDR, 2013. Distribution of short neuropeptide F and its receptor in neuronal circuits related to feeding in larval Drosophila. Cell Tissue Res, 353(3):511-523.

[11]CerstiaensANJA, BenfekihL, ZouitenH, et al., 1999. Led-NPF-1 stimulates ovarian development in locusts. Peptides, 20(1):39-44.

[12]ChenME, PietrantonioPV, 2006. The short neuropeptide F‐like receptor from the red imported fire ant, Solenopsis invicta buren (Hymenoptera: Formicidae). Arch Insect Biochem Physiol, 61(4):195-208.

[13]ChenWF, ShiW, LiLZ, et al., 2013. Regulation of sleep by the short neuropeptide F (sNPF) in Drosophila melanogaster. Insect Biochem Mol Biol, 43(9):809-819.

[14]ChintapalliVR, TerhzazS, WangJ, et al., 2012. Functional correlates of positional and gender-specific renal asymmetry in Drosophila. PLoS ONE, 7(4):e32577.

[15]ChristP, ReifenrathA, KahntJ, et al., 2017. Feeding-induced changes in allatostatin-A and short neuropeptide F in the antennal lobes affect odor-mediated host seeking in the yellow fever mosquito, Aedes aegypti. PLoS ONE, 12(11):e0188243.

[16]ChristP, HillSR, SchachtnerJ, et al., 2018. Functional characterization of mosquito short neuropeptide F receptors. Peptides, 103:31-39.

[17]CuiHY, ZhaoZW, 2020. Structure and function of neuropeptide F in insects. J Integr Agric, 19(6):1429-1438.

[18]de LoofA, BaggermanG, BreuerM, et al., 2001. Gonadotropins in insects: an overview. Arch Insect Biochem Physiol, 47(3):129-138.

[19]des MarteauxL, XiJL, ManoG, et al., 2022. Circadian clock outputs regulating insect photoperiodism: a potential role for glutamate transporter. Biochem Biophys Res Commun, 589:100-106.

[20]DillenS, ZelsS, VerlindenH, et al., 2013. Functional characterization of the short neuropeptide F receptor in the desert locust, Schistocerca gregaria. PLoS ONE, 8(1):e53604.

[21]DillenS, VerdonckR, ZelsS, et al., 2014. Identification of the short neuropeptide F precursor in the desert locust: evidence for an inhibitory role of sNPF in the control of feeding. Peptides, 53:134-139.

[22]DillenS, ChenZW, BroeckJV, 2015. Assaying visual memory in the desert locust. Insects, 6(2):409-418.

[23]ElphickMR, MirabeauO, 2014. The evolution and variety of RFamide-type neuropeptides: insights from deuterostomian invertebrates. Front Endocrinol, 5:93.

[24]FaddaM, HasakiogullariI, TemmermanL, et al., 2019. Regulation of feeding and metabolism by neuropeptide F and short neuropeptide F in invertebrates. Front Endocrinol, 10:64.

[25]FengGP, RealeV, ChatwinH, et al., 2003. Functional characterization of a neuropeptide F-like receptor from Drosophila melanogaster. Eur J Neurosci, 18(2):227-238.

[26]GainetdinovRR, PremontRT, BohnLM, et al., 2004. Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci, 27:107-144.

[27]GarczynskiSF, BrownMR, CrimJW, 2006. Structural studies of Drosophila short neuropeptide F: occurrence and receptor binding activity. Peptides, 27(3):575-582.

[28]GarczynskiSF, CrimJW, BrownMR, 2007. Characterization and expression of the short neuropeptide F receptor in the African malaria mosquito, Anopheles gambiae. Peptides, 28(1):109-118.

[29]HauserF, CazzamaliG, WilliamsonM, et al., 2008. A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front Neuroendocrinol, 29(1):142-165.

[30]HewesRS, TaghertPH, 2001. Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res, 11(6):1126-1142.

[31]HongSH, LeeKS, KwakSJ, et al., 2012. Minibrain/Dyrk1a regulates food intake through the Sir2-FOXO-sNPF/NPY pathway in Drosophila and mammals. PLoS Genet, 8(8):e1002857.

[32]HummonAB, RichmondTA, VerleyenP, et al., 2006. From the genome to the proteome: uncovering peptides in the Apis brain. Science, 314(5799):647-649.

[33]HuybrechtsJ, de LoofA, SchoofsL, 2004. Diapausing Colorado potato beetles are devoid of short neuropeptide F I and II. Biochem Biophys Res Commun, 317(3):909-916.

[34]InagakiHK, PanseKM, AndersonDJ, 2014. Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. Neuron, 84(4):806-820.

[35]IsaacRE, TaylorCA, HamasakaY, et al., 2004. Proctolin in the post-genomic era: new insights and challenges. Invert Neurosci, 5(2):51-64.

[36]JékelyG, 2013. Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc Natl Acad Sci USA, 110(21):8702-8707.

[37]JiangHB, GuiSH, XuL, et al., 2017. The short neuropeptide F modulates olfactory sensitivity of Bactrocera dorsalis upon starvation. J Insect Physiol, 99:78-85.

[38]JohardHAD, EnellLE, GustafssonE, et al., 2008. Intrinsic neurons of Drosophila mushroom bodies express short neuropeptide F: relations to extrinsic neurons expressing different neurotransmitters. J Comp Neurol, 507(4):1479-1496.

[39]JohardHAD, YoishiiT, DircksenH, et al., 2009. Peptidergic clock neurons in Drosophila: ion transport peptide and short neuropeptide F in subsets of dorsal and ventral lateral neurons. J Comp Neurol, 516(1):59-73.

[40]JuneauZC, StonemetzJM, TomaRF, et al., 2019. Optogenetic activation of short neuropeptide F (sNPF) neurons induces sleep in Drosophila melanogaster. Physiol Behav, 206:143-156.

[41]KahsaiL, KapanN, DircksenH, et al., 2010. Metabolic stress responses in Drosophila are modulated by brain neurosecretory cells that produce multiple neuropeptides. PLoS ONE, 5(7):e11480.

[42]KahsaiL, CarlssonMA, WintherÅME, et al., 2012. Distribution of metabotropic receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the central complex of Drosophila. Neuroscience, 208:11-26.

[43]KanekoY, HirumaK, 2014. Short neuropeptide F (sNPF) is a stage-specific suppressor for juvenile hormone biosynthesis by corpora allata, and a critical factor for the initiation of insect metamorphosis. Dev Biol, 393(2):312-319.

[44]KapanN, LushchakOV, LuoJN, et al., 2012. Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cell Mol Life Sci, 69(23):4051-4066.

[45]KimWJ, LeeSG, AugeAC, et al., 2016. Sexually satiated male uses gustatory-to-neuropeptide integrative circuits to reduce time investment for mating. bioRxiv, preprint.

[46]KnapekS, KahsaiL, WintherÅME, et al., 2013. Short neuropeptide F acts as a functional neuromodulator for olfactory memory in Kenyon cells of Drosophila mushroom bodies. J Neurosci, 33(12):5340-5345.

[47]KoKI, RootCM, LindsaySA, et al., 2015. Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits. eLife, 4:e08298.

[48]LeeKS, YouKH, ChooJK, et al., 2004. Drosophila short neuropeptide F regulates food intake and body size. J Biol Chem, 279(49):50781-50789.

[49]LeeKS, KwonOY, LeeJH, et al., 2008. Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat Cell Biol, 10(4):468-475.

[50]LiHF, HuangXY, YangYH, et al., 2022. The short neuropeptide F receptor regulates olfaction-mediated foraging behavior in the oriental fruit fly Bactrocera dorsalis (Hendel). Insect Biochem Mol Biol, 140:103697.

[51]LiuB, FuDY, NingH, et al., 2021. Identification of the short neuropeptide F and short neuropeptide F receptor genes and their roles of food intake in Dendroctonus armandi. Insects, 12(9):844.

[52]LiuYT, LiaoSF, VeenstraJA, et al., 2016. Drosophila insulin-like peptide 1 (DILP1) is transiently expressed during non-feeding stages and reproductive dormancy. Sci Rep, 6:26620.

[53]LuHL, PietrantonioPV, 2011. Immunolocalization of the short neuropeptide F receptor in queen brains and ovaries of the red imported fire ant (Solenopsis invicta Buren). BMC Neurosci, 12:57.

[54]MaQ, CaoZ, YuYN, et al., 2017. Bombyx neuropeptide G protein‒coupled receptor A7 is the third cognate receptor for short neuropeptide F from silkworm. J Biol Chem, 292(50):20599-20612.

[55]MarciniakP, GrodeckiS, KonopińskaD, et al., 2008. Structure‒activity relationships for the cardiotropic action of the Led-NPF-I peptide in the beetles Tenebrio molitor and Zophobas atratus. J Pept Sci, 14(3):329-334.

[56]MarciniakP, SzymczakM, RogalskaL, et al., 2013. Developmental and myotropic effects of the Led-NPF-I peptide in tenebrionid beetles. Invertebr Reprod Dev, 57(4):309-315.

[57]MarciniakP, UrbańskiA, KudlewskaM, et al., 2017. Peptide hormones regulate the physiological functions of reproductive organs in Tenebrio molitor males. Peptides, 98:35-42.

[58]MarciniakP, UrbańskiA, LubawyJ, et al., 2020. Short neuropeptide F signaling regulates functioning of male reproductive system in Tenebrio molitor beetle. J Comp Physiol B, 190(5):521-534.

[59]MarciniakP, Pacholska-BogalskaJ, RagionieriL, 2022. Neuropeptidomes of Tenebrio molitor L. and Zophobas atratus Fab. (Coleoptera, Polyphaga: Tenebrionidae). J Proteome Res, 21(10):2247-2260.

[60]MartelliC, PechU, KobbenbringS, et al., 2017. SIFamide translates hunger signals into appetitive and feeding behavior in Drosophila. Cell Rep, 20(2):464-478.

[61]MertensI, MeeusenT, HuybrechtsR, et al., 2002. Characterization of the short neuropeptide F receptor from Drosophila melanogaster. Biochem Biophys Res Commun, 297(5):1140-1148.

[62]MikaniA, WangQS, TakedaM, 2012. Brain-midgut short neuropeptide F mechanism that inhibits digestive activity of the American cockroach, Periplaneta americana upon starvation. Peptides, 34(1):135-144.

[63]MikaniA, WatariY, TakedaM, 2015. Brain-midgut cross-talk and autocrine metabolastat via the sNPF/CCAP negative feed-back loop in the American cockroach, Periplaneta americana. Cell Tissue Res, 362(3):481-496.

[64]MirabeauO, JolyJS, 2013. Molecular evolution of peptidergic signaling systems in bilaterians. Proc Natl Acad Sci USA, 110(22):E2028-E2037.

[65]MyersEM, YuJJ, SehgalA, 2003. Circadian control of eclosion: interaction between a central and peripheral clock in Drosophila melanogaster. Curr Biol, 13(6):526-533.

[66]NagataS, MatsumotoS, NakaneT, et al., 2012. Effects of starvation on brain short neuropeptide F-1, -2, and -3 levels and short neuropeptide F receptor expression levels of the silkworm, Bombyx mori. Front Endocrinol, 3:3.

[67]NagyD, CusumanoP, AndreattaG, et al., 2019. Peptidergic signaling from clock neurons regulates reproductive dormancy in Drosophila melanogaster. PLoS Genet, 15(6):e1008158.

[68]NusbaumMP, BlitzDM, MarderE, 2017. Functional consequences of neuropeptide and small-molecule co-transmission. Nat Rev Neurosci, 18(7):389-403.

[69]NӓsselDR, 2018. Substrates for neuronal cotransmission with neuropeptides and small molecule neurotransmitters in Drosophila. Front Cell Neurosci, 12:83.

[70]NӓsselDR, WegenerC, 2011. A comparative review of short and long neuropeptide F signaling in invertebrates: any similarities to vertebrate neuropeptide Y signaling? Peptides, 32(6):1335-1355.

[71]NӓsselDR, ZandawalaM, 2019. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol, 179:101607.

[72]NӓsselDR, EnellLE, SantosJG, et al., 2008. A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC Neurosci, 9:90.

[73]OnkenH, MoffettSB, MoffettDF, 2004. The anterior stomach of larval mosquitoes (Aedes aegypti): effects of neuropeptides on transepithelial ion transport and muscular motility. J Exp Biol, 207(Pt 21):3731-3739.

[74]PatkeA, YoungMW, AxelrodS, 2020. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol, 21(2):67-84.

[75]PengX, ChenC, HuangYX, et al., 2021. Expression patterns and functional analysis of the short neuropeptide F and NPF receptor genes in Rhopalosiphum padi. Insect Sci, 28(4):952-964.

[76]PražienkováV, PopelováA, KunešJ, et al., 2019. Prolactin-releasing peptide: physiological and pharmacological properties. Int J Mol Sci, 20(21):5297.

[77]PredelR, NeupertS, GarczynskiSF, et al., 2010. Neuropeptidomics of the mosquito Aedes aegypti. J Proteome Res, 9(4):2006-2015.

[78]RealeV, ChatwinHM, EvansPD, 2004. The activation of G-protein gated inwardly rectifying K+ channels by a cloned Drosophila melanogaster neuropeptide F-like receptor. Eur J Neurosci, 19(3):570-576.

[79]RootCM, KoKI, JafariA, et al., 2011. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell, 145(1):133-144.

[80]RosatoE, KyriacouCP, 2017. Staring at the clock face in Drosophila. Neuron, 94(6):1046-1048.

[81]SchoofsL, ClynenE, CerstiaensA, et al., 2001. Newly discovered functions for some myotropic neuropeptides in locusts. Peptides, 22(2):219-227.

[82]SchoofsL, de LoofA, van HielMB, 2017. Neuropeptides as regulators of behavior in insects. Annu Rev Entomol, 62:35-52.

[83]SelchoM, MillánC, Palacios-MuñozA, et al., 2017. Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila. Nat Commun, 8:15563.

[84]ShangYH, DonelsonNC, VecseyCG, et al., 2013. Short neuropeptide F is a sleep-promoting inhibitory modulator. Neuron, 80(1):171-183.

[85]ShenR, WangB, GiribaldiMG, et al., 2016. Neuronal energy-sensing pathway promotes energy balance by modulating disease tolerance. Proc Natl Acad Sci USA, 113(23):E3307-E3314.

[86]SiegmundT, KorgeG, 2001. Innervation of the ring gland of Drosophila melanogaster. J Comp Neurol, 431(4):481-491.

[87]SpittaelsK, VerhaertP, ShawC, et al., 1996. Insect neuropeptide F (NPF)-related peptides: isolation from colorado potato beetle (Leptinotarsa decemlineata) brain. Insect Biochem Mol Biol, 26(4):375-382.

[88]SuhYS, BhatS, HongSH, et al., 2015. Genome-wide microRNA screening reveals that the evolutionary conserved miR-9a regulates body growth by targeting sNPFR1/NPYR. Nat Commun, 6:7693.

[89]TomiokaK, MatsumotoA, 2015. Circadian molecular clockworks in non-model insects. Curr Opin Insect Sci, 7:58-64.

[90]ToprakU, 2020. The role of peptide hormones in insect lipid metabolism. Front Physiol, 11:434.

[91]UrbanskiA, RosinskiG, 2018. Role of neuropeptides in the regulation of the insect immune system ‒ current knowledge and perspectives. Curr Protein Pept Sci, 19(12):1201-1213.

[92]Vanden BroeckJ, 2001. Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides, 22(2):241-254.

[93]van WielendaeleP, WynantN, DillenS, et al., 2013. Neuropeptide F regulates male reproductive processes in the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol, 43(3):252-259.

[94]VecseyCG, PírezN, GriffithLC, 2014. The Drosophila neuropeptides PDF and sNPF have opposing electrophysiological and molecular effects on central neurons. J Neurophysiol, 111(5):1033-1045.

[95]VeenstraJA, LambrouG, 1995. Isolation of a novel RFamide peptide from the midgut of the American cockroach, Periplaneta americana. Biochem Biophys Res Commun, 213(2):519-524.

[96]WalkerRJ, PapaioannouS, Holden-DyeL, 2009. A review of FMRFamide- and RFamide-like peptides in metazoa. Invert Neurosci, 9(3-4):111-153.

[97]YamanakaN, YamamotoS, ŽitňanD, et al., 2008. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS ONE, 3(8):e3048.

[98]YoshiiT, TodoT, WülbeckC, et al., 2008. Cryptochrome is present in the compound eyes and a subset of Drosophila’s clock neurons. J Comp Neurol, 508(6):952-966.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE