Full Text:   <4407>

CLC number: TB13

On-line Access: 2019-05-14

Received: 2018-07-27

Revision Accepted: 2019-01-17

Crosschecked: 2019-04-11

Cited: 0

Clicked: 4611

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.4 P.439-457

http://doi.org/10.1631/FITEE.1800451


Optoelectronic platform and technology


Author(s):  Wen-hua Shi, Wei-ming Lv, Tian-yu Sun, Bao-shun Zhang

Affiliation(s):  Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China

Corresponding email(s):   bszhang2006@sinano.ac.cn

Key Words:  Optoelectronic technology, Optoelectronic platform, Process technology, Development and challenges


Share this article to: More |Next Article >>>

Wen-hua Shi, Wei-ming Lv, Tian-yu Sun, Bao-shun Zhang. Optoelectronic platform and technology[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(4): 439-457.

@article{title="Optoelectronic platform and technology",
author="Wen-hua Shi, Wei-ming Lv, Tian-yu Sun, Bao-shun Zhang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="4",
pages="439-457",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800451"
}

%0 Journal Article
%T Optoelectronic platform and technology
%A Wen-hua Shi
%A Wei-ming Lv
%A Tian-yu Sun
%A Bao-shun Zhang
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 4
%P 439-457
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800451

TY - JOUR
T1 - Optoelectronic platform and technology
A1 - Wen-hua Shi
A1 - Wei-ming Lv
A1 - Tian-yu Sun
A1 - Bao-shun Zhang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 4
SP - 439
EP - 457
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800451


Abstract: 
optoelectronic technology is a new technology formed by the combination of photon technology and electronic technology. Photon technology can cause an industrial revolution that supersedes electronic technology, because it will have a deeper impact on industry and society. We review the development of optoelectronic devices and integration technologies. We compare and analyze the development and characteristics of optoelectronic technology platforms, summarize the key manufacturing technologies, introduce several representative optoelectronic devices including flexible devices, and focus on the key breakthrough technologies that need to be achieved. Through a comprehensive review of the development of optoelectronic technology, China should seize the opportunity for a transformation of the optoelectronic technology industry. By drawing on the experiences with advanced optoelectronic platforms and technologies in foreign countries, we should speed up the accumulation and reserves of Chinese industrial talents, pay attention to the accumulation of basic technology, and establish a national optoelectronic technology platform, to greatly enhance domestic levels in these regards and to achieve independent innovations with these devices.

光电子平台与工艺技术

摘要:光电子技术是由光子技术和电子技术结合形成的一门新技术。光子技术将取代电子技术,引发一场新的产业革命,给工业和社会带来巨大冲击。我们回顾光电子器件与集成技术的发展历程,对比分析光电子工艺平台的发展与特点,总结关键性制造工艺,介绍具有代表性的光电器件,并聚焦光电子技术发展亟待突破的关键技术。通过对光电子技术发展的全面梳理,认为我国应抓住机遇,实现光电子技术产业转型升级。借鉴国外先进光电子平台和技术发展经验,加快布局人才储备,注重基础工艺积累,整合建立国家级光电子技术平台,大幅提升我国光器件国产化水平和自主创新能力。

关键词:光电子技术;光电子平台;工艺技术;发展与挑战

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Asghari M, Krishnamoorthy AV, 2011. Energy-efficient communication. Nat Photon, 5(5):268-270.

[2]Atabaki AH, Moazeni S, Pavanello F, et al., 2018. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556(7701):349-354.

[3]Bayindir M, Sorin F, Abouraddy AF, et al., 2004. Metal- insulator-semiconductor optoelectronic fibres. Nature, 431(7010):826-829.

[4]Bogaerts W, Chrostowski L, 2018. Silicon photonics circuit design: methods, tools and challenges. Laser Photon Rev, 12(4):1700237.

[5]Cai Y, Han ZH, Wang XX, et al., 2013. Analysis of threshold current behavior for bulk and quantum-well germanium laser structures. IEEE J Sel Top Quant Electr, 19(4): 1901009.

[6]Cardoso JC, Grimes CA, Feng XJ, et al., 2012. Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic–inorganic thin film photovoltaics. Chem Commun, 48(22):2818-2820.

[7]Chen L, Sohdi A, Bowers JE, et al., 2013. Electronic and photonic integrated circuits for fast data center optical circuit switches. IEEE Commun Mag, 51(9):53-59.

[8]Cui Z, 2005. Micro-Nanofabrication Technologies and Applications. Higher Education Press, Beijing, China (in Chinese).

[9]Forrest SR, 2004. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 428(6986): 911-918.

[10]Gunn C, 2006. CMOS photonics for high-speed interconnects. IEEE Micro, 26(2):58-66.

[11]Haney MW, 2013. How will photonic integrated circuits develop? Proc SPIE 8629, Silicon Photonics VIII, p.86290L.

[12]Heck MJR, Bauters JF, Davenport ML, et al., 2013. Hybrid silicon photonic integrated circuit technology. IEEE J Sel Top Quant Electr, 19(4):6100117.

[13]Heung CH, Stoykovich MP, Song JZ, et al., 2008. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 454(7205):748-753.

[14]Jeong JW, McCall JG, Shin G, et al., 2015. Wireless opto- fluidic systems for programmable in vivo pharmacology and optogenetics. Cell, 162(3):662-674.

[15]Kim RH, Kim DH, Xiao JL, et al., 2010. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater, 9(11): 929-937.

[16]Kim TI, McCall JG, Jung YH, et al., 2013. Injectable, cellular- scale optoelectronics with applications for wireless optogenetics. Science, 340(6129):211-216.

[17]Ko HC, Stoykovich MP, Song JZ, et al., 2008. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 454(7205):748-753.

[18]Lee HW, Schmidt MA, Russell RF, et al., 2011. Pressure- assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Opt Expr, 19(13): 12180-12189.

[19]Li M, Chen XF, Su YK, et al., 2016. Photonic integration circuits in China. IEEE J Quant Electr, 52(1):0601017.

[20]Liang D, Bowers JE, 2008. Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate. J Vac Sci Technol B, 26(4):1560.

[21]Lu LY, Gutruf P, Xia L, et al., 2018. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc Nat Acad Sci USA, 115(7):E1374- E1383.

[22]Nomura K, Ohta H, Takagi A, et al., 2004. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432(7016):488-492.

[23]Ostendorf R, Kaufel G, Moritz R, et al., 2008. 10 W high- efficiency high-brightness tapered diode lasers at 976 nm. Proc SPIE 6876, High-Power Diode Laser Technology and Applications VI, p.68760H.

[24]Park SI, Ahn JH, Feng X, et al., 2008. Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv Funct Mater, 18(18): 2673-2684.

[25]Salimpoor VN, van den Bosch I, Kovacevic N, et al., 2003. Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340(6129): 216-219.

[26]Sazio PJA, Amezcua-Correa A, Finlayson CE, et al., 2006. Microstructured optical fibers as high-pressure micro- fluidic reactors. Science, 311(5767):1583-1586.

[27]Sparks JR, Sazio PJA, Gopalan V, et al., 2013. Templated chemically deposited semiconductor optical fiber materials. Ann Rev Mater Res, 43:527-557.

[28]Vivien L, Osmond J, Fédéli JM, 2009. 42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide. Opt Expr, 17(8):6252-6257.

[29]Wang ZB, Helander MG, Qiu J, et al., 2011. Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nat Photon, 5(12):753-757.

[30]Yan W, Qu YP, Gupta TD, et al., 2017. Semiconducting nanowire-based optoelectronic fibers. Adv Mater, 29(27): 1700681.

[31]Yan W, Page A, Nguyen-Dang T, et al., 2018. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv Mater, 31(1):1802348.

[32]Yang DR, 2016. Silicon Based Photoluminescence Materials and Devices. Science Press, Beijing, China (in Chinese).

[33]Yu JZ, Chen SW, Xia JS, et al., 2005. Research progresses of SOI optical waveguide devices and integrated optical switch matrix. Sci China Ser F, 48(2):234-246.

[34]Yuan LJ, Tao L, Chen WX, et al., 2015. A buried ridge stripe structure InGaAsP-Si hybrid laser. IEEE Photon Technol Lett, 27(4):352-355.

[35]Zhai RH, 2009. Novel photoelectron elements and technologies to support ROF. ZTE Commun, 15(3):11-16 (in Chinese).

[36]Zhu NH, Li M, Hao Y, 2016. Optoelectronic devices and integration technologies. Sci Sin Inform, 46(8):1156-1174 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE