Full Text:   <2648>

Summary:  <1688>

CLC number: TN973.21

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2019-10-10

Cited: 0

Clicked: 5269

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Bo Wang

http://orcid.org/0000-0003-1434-0391

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.10 P.1429-1444

http://doi.org/10.1631/FITEE.1800722


Dot-shaped beamforming analysis of subarray-based sin-FDA


Author(s):  Bo Wang, Jun-wei Xie, Jing Zhang, Jia-ang Ge

Affiliation(s):  Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China; more

Corresponding email(s):   wb_wangbo1991@163.com

Key Words:  Frequency diverse array, Subarray-based frequency diverse array, Decoupling, Dot-shaped beamforming


Bo Wang, Jun-wei Xie, Jing Zhang, Jia-ang Ge. Dot-shaped beamforming analysis of subarray-based sin-FDA[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(10): 1429-1444.

@article{title="Dot-shaped beamforming analysis of subarray-based sin-FDA",
author="Bo Wang, Jun-wei Xie, Jing Zhang, Jia-ang Ge",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="10",
pages="1429-1444",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800722"
}

%0 Journal Article
%T Dot-shaped beamforming analysis of subarray-based sin-FDA
%A Bo Wang
%A Jun-wei Xie
%A Jing Zhang
%A Jia-ang Ge
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 10
%P 1429-1444
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800722

TY - JOUR
T1 - Dot-shaped beamforming analysis of subarray-based sin-FDA
A1 - Bo Wang
A1 - Jun-wei Xie
A1 - Jing Zhang
A1 - Jia-ang Ge
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 10
SP - 1429
EP - 1444
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800722


Abstract: 
Phased array (PA) radar is one of the most popular types of radar. In contrast to PA, the frequency diverse array (FDA) is a potential solution to suppress range-related interference because of its time-range-angle-dependent beampattern. However, the range-angle coupling inherent in the FDA transmit beampattern may degrade the output signal-to-interference-plus-noise ratio (SINR). We propose a dot-shaped beamforming method based on the analyzed four subarray-based FDAs and subarray-based planar FDAs using a sinusoidally increasing frequency offset with elements transmitting at multiple frequencies. The numerical results show that the proposed approach outperforms the existing log-FDA with logarithmical frequency offset in transmit energy focus, sidelobe suppression, and array resolution. Comparative simulation results validate the effectiveness of the proposed method.

基于子阵sin-FDA的点状波束形成研究

摘要:相控阵(phasedarray,PA)雷达是应用最为广泛的雷达类型之一。与PA相比,频率分集阵列(frequency diverse array,FDA)时间-距离-角度相关的波束特性,使其在抑制距离维相关干扰方面具有巨大潜力。但是,FDA发射波束方向图中固有的距离角耦合会降低输出信干噪比(signal-to-interference-plus-noise ratio,SINR)。基于对4种采用正弦频控函数发射多载频的子阵FDA及平面FDA的分析,提出一种点状波束形成方法。数值结果表明,该方法在传输能量聚焦、旁瓣抑制和阵列分辨率上优于现有的log-FDA。对比仿真结果验证了所提方法有效性。

关键词:频率分集阵列;子阵频率分集阵列;解耦;点状波束形成

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Antonik P, Wicks MC, Griffiths HD, et al., 2006a. Frequency diverse array radars. Proc IEEE Conf on Radar, p.215- 217.

[2]Antonik P, Wicks MC, Griffiths HD, et al., 2006b. Range- dependent beamforming using element level waveform diversity. Proc Int Waveform Diversity and Design Conf, p.71-76.

[3]Baizert P, Hale TB, Temple MA, et al., 2006. Forward-looking radar GMTI benefits using a linear frequency diverse array. Electron Lett, 42(22):1311-1312.

[4]Basit A, Qureshi IM, Khan W, et al., 2015. Cognitive frequency offset calculation for frequency diverse array radar. Proc 12th Int Bhurban Conf on Applied Sciences and Technology, p.641-645.

[5]Basit A, Qureshi IM, Khan W, et al., 2017. Beam pattern synthesis for an FDA radar with hamming window-based nonuniform frequency offset. IEEE Antenn Wirel Propag Lett, 16:2283-2286.

[6]Cetintepe C, Demir S, 2014. Multipath characteristics of frequency diverse arrays over a ground plane. IEEE Trans Antenn Propag, 62(7):3567-3574.

[7]Fenn AJ, 2008. Adaptive Antennas and Phased Arrays for Radar and Communications. Artech House, Norwood, MA, USA.

[8]Hansen RC, 2009. Phased Array Antennas (2nd Ed.). John Wiley & Sons, New Jersey, USA.

[9]Hu JS, Yan SH, Shu F, et al., 2017. Artificial-noise-aided secure transmission with directional modulation based on random frequency diverse arrays. IEEE Access, 5:1658- 1667.

[10]Jones AM, Rigling BD, 2012. Planar frequency diverse array receiver architecture. Proc Radar Conf, p.145-150.

[11]Keizer WPMN, 2011. Low sidelobe phased array pattern synthesis with compensation for errors due to quantized tapering. IEEE Trans Antenn Propag, 59(12):4520-4524.

[12]Khan W, Qureshi IM, Saeed S, 2014. Frequency diverse array radar with logarithmically increasing frequency offset. IEEE Antenn Wirel Propag Lett, 14:499-502.

[13]Khan W, Qureshi IM, Basit A, et al., 2015. Range-bins-based MIMO frequency diverse array radar with logarithmic frequency offset. IEEE Antenn Wirel Propag Lett, 15: 885-888.

[14]Khan W, Qureshi IM, Basit A, et al., 2016a. Performance analysis of MIMO-frequency diverse array radar with variable logarithmic offsets. Prog Electromagn Res C, 62:23-34.

[15]Khan W, Qureshi IM, Basit A, et al., 2016b. Transmit/received beamforming for MIMO log-frequency diverse array radar. Proc 13th Int Bhurban Conf on Applied Sciences and Technology, p.689-693.

[16]Li Q, Huang L, So HC, et al., 2017. Beampattern synthesis for frequency diverse array via reweighted 1 iterative phase compensation. IEEE Trans Aerosp Electron Syst, 54(1): 467-475.

[17]Liu YM, 2016. Range azimuth indication using a random frequency diverse array. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.3111-3115.

[18]Sammartino PF, Baker CJ, Griffiths HD, 2013. Frequency diverse MIMO techniques for radar. IEEE Trans Aerosp Electron Syst, 49(1):201-222.

[19]Shao H, Dai H, Xiong H, et al., 2016. Dot-shaped range-angle beampattern synthesis for frequency diverse array. IEEE Antenn Wirel Propag Lett, 15:1703-1706.

[20]Shin J, Choi JH, Kim J, et al., 2013. Full-wave simulation of frequency diverse array antenna using the FDTD method. Proc Conf on Asia-Pacific Microwave, p.1070-1072.

[21]Wang SL, Xu ZH, Liu XH, et al., 2018. A novel transmit- receive system of frequency diverse array radar for multitarget localization. Electronics, 7(12), Article 408.

[22]Wang WQ, 2014. Subarray-based frequency diverse array radar for target range-angle estimation. IEEE Trans Aerosp Electron Syst, 50(4):3057-3067.

[23]Wang WQ, So HC, 2014. Transmit subaperturing for range and angle estimation in frequency diverse array radar. IEEE Trans Signal Process, 62(8):2000-2011.

[24]Wang WQ, Shao HZ, Cai JY, 2012. Range-angle-dependent beamforming by frequency diverse array antenna. Int J Antenn Propag, 2012:760489.

[25]Wang WQ, So HC, Shao HZ, 2014. Nonuniform frequency diverse array for range-angle imaging of targets. IEEE Sens J, 14(8):2469-2476.

[26]Wang YX, Huang GC, Li W, 2016. Transmit beampattern design in range and angle domains for MIMO frequency diverse array radar. IEEE Antenn Wirel Propag Lett, 16:1003-1006.

[27]Wicks MC, Antonik P, 2008. Frequency Diverse Array with Independent Modulation of Frequency, Amplitude, and Phase. US Patent 731 942 7B2.

[28]Wicks MC, Antonik P, 2009. Method and Apparatus for a Frequency Diverse Array. US Patent 2 009 001 547 4A1.

[29]Xu YH, Shi XW, Xu JW, et al., 2015. Range-angle-dependent beamforming of pulsed frequency diverse array. IEEE Trans Antenn Propag, 63(7):3262-3267.

[30]Xu YH, Shi XW, Xu JW, et al., 2017. Range-angle-decoupled beampattern synthesis with subarray-based frequency diverse array. Dig Signal Proc, 64:49-59.

[31]Zhang ZJ, Xie JW, Sheng C, et al., 2017. Deceptive jamming discrimination based on range-angle localization of frequency diverse array. Front Inform Technol Electron Eng, 18(9):1437-1447.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE