Full Text:   <2039>

Summary:  <67>

CLC number: TP273

On-line Access: 2022-03-22

Received: 2020-11-17

Revision Accepted: 2022-04-22

Crosschecked: 2021-03-01

Cited: 0

Clicked: 3512

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yulong HUANG

https://orcid.org/0000-0001-9303-9083

Mingming BAI

https://orcid.org/0000-0002-4790-8791

Yonggang ZHANG

https://orcid.org/0000-0003-4548-1111

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.3 P.422-437

http://doi.org/10.1631/FITEE.2000642


A novel multiple-outlier-robust Kalman filter


Author(s):  Yulong HUANG, Mingming BAI, Yonggang ZHANG

Affiliation(s):  College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

Corresponding email(s):   heuedu@163.com, mingming.bai@hrbeu.edu.cn, zhangyg@hrbeu.edu.cn

Key Words:  Kalman filtering, Multiple statistical similarity measure, Multiple outliers, Fixed-point iteration, State estimate


Yulong HUANG, Mingming BAI, Yonggang ZHANG. A novel multiple-outlier-robust Kalman filter[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(3): 422-437.

@article{title="A novel multiple-outlier-robust Kalman filter",
author="Yulong HUANG, Mingming BAI, Yonggang ZHANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="3",
pages="422-437",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000642"
}

%0 Journal Article
%T A novel multiple-outlier-robust Kalman filter
%A Yulong HUANG
%A Mingming BAI
%A Yonggang ZHANG
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 3
%P 422-437
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000642

TY - JOUR
T1 - A novel multiple-outlier-robust Kalman filter
A1 - Yulong HUANG
A1 - Mingming BAI
A1 - Yonggang ZHANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 3
SP - 422
EP - 437
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000642


Abstract: 
This paper presents a novel multiple-outlier-robust Kalman filter (MORKF) for linear stochastic discrete-time systems. A new multiple statistical similarity measure is first proposed to evaluate the similarity between two random vectors from dimension to dimension. Then, the proposed MORKF is derived via maximizing a multiple statistical similarity measure based cost function. The MORKF guarantees the convergence of iterations in mild conditions, and the boundedness of the approximation errors is analyzed theoretically. The selection strategy for the similarity function and comparisons with existing robust methods are presented. Simulation results show the advantages of the proposed filter.

一种新型多样野值鲁棒卡尔曼滤波器

黄玉龙,柏明明,张勇刚
哈尔滨工程大学智能科学与工程学院,中国哈尔滨市,150001
摘要:针对线性离散随机系统,提出一种新型多样野值鲁棒卡尔曼滤波器(MORKF)。首先提出一种新的多重统计相似度来衡量两个随机向量各维度之间的相似性。然后,通过最大化基于多重统计相似度量的代价函数,得到所提出的MORKF。MORKF保证了迭代在弱约束下的收敛性,且本文从理论上分析了近似误差的有界性。给出了相似函数的选择策略,并与现有鲁棒方法进行比较。仿真结果验证了该滤波器的优越性。

关键词:卡尔曼滤波;多重统计相似度量;多样野值;定点迭代;状态估计

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chen BD, Liu X, Zhao HQ, et al., 2017. Maximum correntropy Kalman filter. Automatica, 76:70-77.

[2]Huang YL, Zhang YG, Li N, et al., 2016. Robust Student’s t based nonlinear filter and smoother. IEEE Trans Aerosp Electron Syst, 52(5):2586-2596.

[3]Huang YL, Zhang YG, Li N, et al., 2017. A novel robust Student’s t-based Kalman filter. IEEE Trans Aerosp Electron Syst, 53(3):1545-1554.

[4]Huang YL, Zhang YG, Zhao YX, et al., 2019a. A novel robust Gaussian-Student’s t mixture distribution based Kalman filter. IEEE Trans Signal Process, 67(13):3606-3620.

[5]Huang YL, Zhang YG, Chambers JA, 2019b. A novel Kullback–Leibler divergence minimization-based adaptive Student’s t-filter. IEEE Trans Signal Process, 67(20):5417-5432.

[6]Huang YL, Zhang YG, Shi P, et al., 2019c. Robust Kalman filters based on Gaussian scale mixture distributions with application to target tracking. IEEE Trans Syst Man Cybern Syst, 49(10):2082-2096.

[7]Huang YL, Zhang YG, Zhao YX, et al., 2020. A novel outlier-robust Kalman filtering framework based on statistical similarity measure. IEEE Trans Autom Contr, 66(6):2677-2692.

[8]Huber PJ, 2011. Robust statistics. In: Lovric M (Ed.), International Encyclopedia of Statistical Science. Springer, Berlin, Germany.

[9]Piché R, Särkkä S, Hartikainen J, 2012. Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate Student-t distribution. Proc IEEE Int Workshop on Machine Learning for Signal Processing, p.1-6.

[10]Roth M, Ardeshiri T, Özkan E, et al., 2017. Robust Bayesian filtering and smoothing using Student’s t distribution. https://arxiv.org/abs/1703.02428

[11]Simon D, 2006. Optimal State Estimation: Kalman, H, and Nonlinear Approaches. John Wiley, Hoboken, USA.

[12]Ting JA, Theodorou E, Schaal S, 2007. Learning an outlier-robust Kalman filter. Proc 18th European Conf on Machine Learning, p.748-756.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE