Full Text:   <5550>

Summary:  <258>

CLC number: Q811; TN303

On-line Access: 2022-10-26

Received: 2021-11-29

Revision Accepted: 2022-04-24

Crosschecked: 2022-10-26

Cited: 0

Clicked: 1678

Citations:  Bibtex RefMan EndNote GB/T7714


Mingxuan BU


Xiaodong PI


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.11 P.1579-1601


Synaptic devices based on semiconductor nanocrystals

Author(s):  Mingxuan BU, Yue WANG, Lei YIN, Zhouyu TONG, Yiqiang ZHANG, Deren YANG, Xiaodong PI

Affiliation(s):  State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   xdpi@zju.edu.cn

Key Words:  Semiconductor nanocrystal, Synaptic devices, Neuromorphic computing

Share this article to: More |Next Article >>>

Mingxuan BU, Yue WANG, Lei YIN, Zhouyu TONG, Yiqiang ZHANG, Deren YANG, Xiaodong PI. Synaptic devices based on semiconductor nanocrystals[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(11): 1579-1601.

@article{title="Synaptic devices based on semiconductor nanocrystals",
author="Mingxuan BU, Yue WANG, Lei YIN, Zhouyu TONG, Yiqiang ZHANG, Deren YANG, Xiaodong PI",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Synaptic devices based on semiconductor nanocrystals
%A Mingxuan BU
%A Lei YIN
%A Zhouyu TONG
%A Yiqiang ZHANG
%A Deren YANG
%A Xiaodong PI
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 11
%P 1579-1601
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100551

T1 - Synaptic devices based on semiconductor nanocrystals
A1 - Mingxuan BU
A1 - Yue WANG
A1 - Lei YIN
A1 - Zhouyu TONG
A1 - Yiqiang ZHANG
A1 - Deren YANG
A1 - Xiaodong PI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 11
SP - 1579
EP - 1601
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100551

To meet a growing demand for information processing, brain-inspired neuromorphic devices have been intensively studied in recent years. As an important type of neuromorphic device, synaptic devices have attracted strong attention. Among all the kinds of materials explored for the fabrication of synaptic devices, semiconductor nanocrystals (NCs) have become one of the preferred choices due to their excellent electronic and optical properties. In this review, we first introduce the research background of synaptic devices based on semiconductor NCs and briefly present the basic properties of semiconductor NCs. Recent developments in the field of synaptic devices based on semiconductor NCs are then discussed according to the materials employed in the active layers of the devices. Finally, we discuss existing problems and challenges of synaptic devices based on semiconductor NCs.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Arduca E, Perego M, 2017. Doping of silicon nanocrystals. Mater Sci Semicond Process, 62:156-170.

[2]Attwell D, Laughlin SB, 2001. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab, 21(10):1133-1145.

[3]Block N, 1981. Psychologism and behaviorism. Philos Rev, 90(1):5-43.

[4]Boles MA, Ling DS, Hyeon T, et al., 2016. The surface science of nanocrystals. Nat Mater, 15:141-153.

[5]Buca D, Minamisawa RA, Trinkaus H, et al., 2009. Relaxation of strained pseudomorphic SixGe1−x layers on He-implanted Si/δ-Si: C/Si(100) substrates. Appl Phys Lett, 95(14):144103.

[6]Bussian DA, Crooker SA, Yin M, et al., 2009. Tunable magnetic exchange interactions in manganese-doped inverted core-shell ZnSe-CdSe nanocrystals. Nat Mater, 8(1):35-40.

[7]Chaudhuri RG, Paria S, 2012. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev, 112(4):2373-2433.

[8]Chen JY, Yang DL, Jhuang FC, et al., 2021. Ultrafast responsive and low-energy-consumption poly(3-hexylthiophene)/perovskite quantum dots composite film-based photonic synapse. Adv Funct Mater, 31(47):2105911.

[9]Chiu MY, Chen CC, Sheu JT, et al., 2009. An optical programming/electrical erasing memory device: organic thin film transistors incorporating core/shell CdSe@ZnSe quantum dots and poly(3-hexylthiophene). Org Electron, 10(5):769-774.

[10]Choi BJ, Chen ABK, Yang X, et al., 2011. Purely electronic switching with high uniformity, resistance tunability, and good retention in Pt-dispersed SiO2 thin films for ReRAM. Adv Mater, 23(33):3847-3852.

[11]Coe S, Woo WK, Bawendi M, et al., 2002. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 420 (6917):800-803.

[12]Collier CP, Saykally RJ, Shiang JJ, et al., 1997. Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science, 277(5334):1978-1981.

[13]Dai SL, Zhao YW, Wang Y, et al., 2019. Recent advances in transistor-based artificial synapses. Adv Funct Mater, 29(42):1903700.

[14]D'amour JA, Froemke RC, 2015. Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex. Neuron, 86(2):514-528.

[15]Dasog M, De Los Reyes GB, Titova LV, et al., 2014. Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano, 8(9):9636-9648.

[16]Debanne D, Guérineau NC, Gähwiler BH, et al., 1996. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. J Physiol, 491(1):163-176.

[17]Deegan RD, Bakajin O, Dupont TF, et al., 1997. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389(6653):827-829.

[18]Dohnalová K, Gregorkiewicz T, Kůsová K, 2014. Silicon quantum dots: surface matters. J Phys Condens Matter, 26(17):173201.

[19]Ekimov AI, Efros AL, Onushchenko AA, 1985. Quantum size effect in semiconductor microcrystals. Sol State Commun, 56(11):921-924.

[20]Erogbogbo F, Liu TH, Ramadurai N, et al., 2011. Creating ligand-free silicon germanium alloy nanocrystal inks. ACS Nano, 5(10):7950-7959.

[21]Esser SK, Merolla PA, Arthur JV, et al., 2016. Convolutional networks for fast, energy-efficient neuromorphic computing. Proc Natl Acad Sci USA, 113(41):11441-11446.

[22]Gkoupidenis P, Koutsouras DA, Malliaras GG, 2017. Neuromorphic device architectures with global connectivity through electrolyte gating. Nat Commun, 8(1):15448.

[23]Guo LJ, Leobandung E, Chou SY, 1997. A silicon single-electron transistor memory operating at room temperature. Science, 275(5300):649-651.

[24]Gur I, Fromer NA, Geier ML, et al., 2005. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 310(5747):462-465.

[25]Han C, Han XW, Han JY, et al., 2022. Light‐stimulated synaptic transistor with high PPF feature for artificial visual perception system application. Adv Funct Mater, 32(22):2113053.

[26]Hao DD, Zhang JY, Dai SL, et al., 2020. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl Mater Interf, 12(35):39487-39495.

[27]He LH, Li EL, He WX, et al., 2021. Complementary of ferroelectric and floating gate structure for high performance organic nonvolatile memory. Adv Electron Mater, 7(11):2100599.

[28]He WX, Fang Y, Yang HH, et al., 2019. A multi-input light-stimulated synaptic transistor for complex neuromorphic computing. J Mater Chem C, 7(40):12523-12531.

[29]Heitmann J, Müller F, Zacharias M, et al., 2005. Silicon nanocrystals: size matters. Adv Mater, 17(7):795-803.

[30]Holman ZC, Kortshagen UR, 2011. Nanocrystal inks without ligands: stable colloids of bare germanium nanocrystals. Nano Lett, 11(5):2133-2136.

[31]Hou YX, Li Y, Zhang ZC, et al., 2021. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano, 15(1):1497-1508.

[32]Hu H, Larson RG, 2005. Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir, 21(9):3972-3980.

[33]Hu H, Wen GH, Wen JM, et al., 2021. Ambipolar charge storage in type-I core/shell semiconductor quantum dots toward optoelectronic transistor-based memories. Adv Sci, 8(16):2100513.

[34]Hu LX, Yang J, Wang JR, et al., 2021. All-optically controlled memristor for optoelectronic neuromorphic computing. Adv Funct Mater, 31(4):2005582.

[35]Huang W, Hang PJ, Wang Y, et al., 2020. Zero-power optoelectronic synaptic devices. Nano Energy, 73:104790.

[36]Hussain T, Abbas H, Youn C, et al., 2022. Cellulose nanocrystal based bio-memristor as a green artificial synaptic device for neuromorphic computing applications. Adv Mater Technol, 7(2):2100744.

[37]Indiveri G, Chicca E, Douglas R, 2006. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans Neur Netw, 17(1):211-221.

[38]Jiang CB, Zhong ZM, Liu BQ, et al., 2016. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices. ACS Appl Mater Interf, 8(39):26162-26168.

[39]Kagan CR, Lifshitz E, Sargent EH, et al., 2016. Building devices from colloidal quantum dots. Science, 353(6302):aac5523.

[40]Kawauchi T, Kano S, Fujii M, 2019. Electrically stimulated synaptic resistive switch in solution-processed silicon nanocrystal thin film: formation mechanism of oxygen vacancy filament for synaptic function. ACS Appl Electron Mater, 1(12):2664-2670.

[41]Kim K, Chen CL, Truong Q, et al., 2013. A carbon nanotube synapse with dynamic logic and learning. Adv Mater, 25(12):1693-1698.

[42]Lee E, Kim J, Bhoyate S, et al., 2020. Realizing scalable two-dimensional MoS2 synaptic devices for neuromorphic computing. Chem Mater, 32(24):10447-10455.

[43]Lee WCA, Bonin V, Reed M, et al., 2016. Anatomy and function of an excitatory network in the visual cortex. Nature, 532(7599):370-374.

[44]Li EL, Lin WK, Yan YJ, et al., 2019. Synaptic transistor capable of accelerated learning induced by temperature- facilitated modulation of synaptic plasticity. ACS Appl Mater Interf, 11(49):46008-46016.

[45]Li FS, Son DI, Seo SM, et al., 2007. Organic bistable devices based on core/shell CdSe/ZnS nanoparticles embedded in a conducting poly(N-vinylcarbazole) polymer layer. Appl Phys Lett, 91(12):122111.

[46]Li Q, Luo TY, Zhou M, et al., 2016. Silicon nanoparticles with surface nitrogen: 90% quantum yield with narrow luminescence bandwidth and the ligand structure based energy law. ACS Nano, 10(9):8385-8393.

[47]Li XM, Rui MC, Song JZ, et al., 2015. Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater, 25(31):4929-4947.

[48]Li YY, Wang Y, Yin L, et al., 2021. Silicon-based inorganic-organic hybrid optoelectronic synaptic devices simulating cross-modal learning. Sci China Inform Sci, 64(6):162401.

[49]Lin Y, Wang ZQ, Zhang X, et al., 2020. Photoreduced nanocomposites of graphene oxide/N-doped carbon dots toward all-carbon memristive synapses. NPG Asia Mater, 12(1):64.

[50]Liu CS, Yan X, Song XF, et al., 2018. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat Nanotechnol, 13(5):404-410.

[51]Liu Q, Dou CM, Wang Y, et al., 2009. Formation of multiple conductive filaments in the Cu/ZrO2: Cu/Pt device. Appl Phys Lett, 95(2):023501.

[52]Liu XK, Zhang YH, Yu T, et al., 2016. Optimum quantum yield of the light emission from 2 to 10 nm hydrosilylated silicon quantum dots. Part Part Syst Charact, 33(1):44-52.

[53]Liu Y, Gibbs M, Puthussery J, et al., 2010. Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Lett, 10(5):1960-1969.

[54]Lv ZY, Wang Y, Chen JR, et al., 2020. Semiconductor quantum dots for memories and neuromorphic computing systems. Chem Rev, 120(9):3941-4006.

[55]Ma HL, Wang W, Xu HY, et al., 2018. Interface state-induced negative differential resistance observed in hybrid perovskite resistive switching memory. ACS Appl Mater Interf, 10(25):21755-21763.

[56]Ma YS, Pi XD, Yang DR, 2012. Fluorine-passivated silicon nanocrystals: surface chemistry versus quantum confinement. J Phys Chem C, 116(9):5401-5406.

[57]Machens CK, 2012. Building the human brain. Science, 338(6111):1156-1157.

[58]Manipatruni S, Nikonov DE, Young IA, 2018. Beyond CMOS computing with spin and polarization. Nat Phys, 14(4):338-343.

[59]Marri I, Degoli E, Ossicini S, 2017. Doped and codoped silicon nanocrystals: the role of surfaces and interfaces. Prog Surf Sci, 92(4):375-408.

[60]Mastronardi ML, Maier-Flaig F, Faulkner D, et al., 2012. Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. Nano Lett, 12(1):337-342.

[61]Merolla PA, Arthur JV, Alvarez-Icaza R, et al., 2014. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 345(6197):668-673.

[62]Ni ZY, Pi XD, Zhou S, et al., 2016. Size-dependent structures and optical absorption of boron-hyperdoped silicon nanocrystals. Adv Opt Mater, 4(5):700-707.

[63]Ni ZY, Ma LL, Du SC, et al., 2017. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano, 11(10):9854-9862.

[64]Ni ZY, Wang Y, Liu LX, et al., 2018. Hybrid structure of silicon nanocrystals and 2D WSe2 for broadband optoelectronic synaptic devices. IEEE Int Electron Devices Meeting, p.38.5.1-38.5.4.

[65]Ni ZY, Zhou S, Zhao SY, et al., 2019. Silicon nanocrystals: unfading silicon materials for optoelectronics. Mater Sci Eng R Rep, 138:85-117.

[66]Norris DJ, Efros AL, Erwin SC, 2008. Doped nanocrystals. Science, 319(5871):1776-1779.

[67]Periyal SS, Jagadeeswararao M, Ng SE, et al., 2020. Halide perovskite quantum dots photosensitized-amorphous oxide transistors for multimodal synapses. Adv Mater Technol, 5(11):2000514.

[68]Pradhan B, Das S, Li JX, et al., 2020. Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci Adv, 6(7):eaay5225.

[69]Prezioso M, Merrikh-Bayat F, Hoskins BD, et al., 2015. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 521(7550):61-64.

[70]Schaller RD, Klimov VI, 2004. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett, 92(18):186601.

[71]Schaller RD, Agranovich VM, Klimov VI, 2005. High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nat Phys, 1(3):189-194.

[72]Searle JR, 1980. Minds, brains, and programs. Behav Brain Sci, 3(3):417-424.

[73]Semonin OE, Johnson JC, Luther JM, et al., 2010. Absolute photoluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots. J Phys Chem Lett, 1(16):2445-2450.

[74]Service RF, 2004. Printable electronics that stick around. Science, 304(5671):675.

[75]Singh M, Goyal M, Devlal K, 2018. Size and shape effects on the band gap of semiconductor compound nanomaterials. J Taibah Univ Sci, 12(4):470-475.

[76]Smith AM, Nie SM, 2010. Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res, 43(2):190-200.

[77]So WY, Li Q, Legaspi CM, et al., 2018. Mechanism of ligand-controlled emission in silicon nanoparticles. ACS Nano, 12(7):7232-7238.

[78]Sonawane KG, Rajesh C, Temgire M, et al., 2011. A case study: Te in ZnSe and Mn-doped ZnSe quantum dots. Nanotechnology, 22(30):305702.

[79]Sun YL, Ding YT, Xie D, 2021a. Mixed-dimensional van der Waals heterostructures enabled optoelectronic synaptic devices for neuromorphic applications. Adv Funct Mater, 31(47):2105625.

[80]Sun YL, Ding YT, Xie D, et al., 2021b. Optogenetics-inspired neuromorphic optoelectronic synaptic transistors with optically modulated plasticity. Adv Opt Mater, 9(12):2002232.

[81]Talapin DV, Murray CB, 2005. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science, 310(5745):86-89.

[82]Talgorn E, Gao YN, Aerts M, et al., 2011. Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids. Nat Nanotechnol, 6(11):733-739.

[83]Tan H, Ni ZY, Peng WB, et al., 2018. Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing. Nano Energy, 52:422-430.

[84]Tang JS, Yuan F, Shen XK, et al., 2019. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv Mater, 31(49):1902761.

[85]Thomas A, Resmi AN, Ganguly A, et al., 2020. Programmable electronic synapse and nonvolatile resistive switches using MoS2 quantum dots. Sci Rep, 10(1):12450.

[86]Turing AM, 1950. Computing machinery and intelligence. Mind, 59(236):433-460.

[87]Upadhyay NK, Joshi S, Yang JJ, 2016. Synaptic electronics and neuromorphic computing. Sci China Inform Sci, 59(6):061404.

[88]van de Burgt Y, Melianas A, Keene ST, et al., 2018. Organic electronics for neuromorphic computing. Nat Electron, 1(7):386-397.

[89]Wang K, Dai SL, Zhao YW, et al., 2019. Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small, 15(11):1900010.

[90]Wang Q, Shao YC, Xie HP, et al., 2014. Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl Phys Lett, 105(16):163508.

[91]Wang R, Pi XD, Yang DR, 2012. First-principles study on the surface chemistry of 1.4 nm silicon nanocrystals: case of hydrosilylation. J Phys Chem C, 116(36):19434-19443.

[92]Wang TY, Meng JL, Rao MY, et al., 2020. Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett, 20(6):4111-4120.

[93]Wang Y, Lv ZY, Chen JR, et al., 2018. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv Mater, 30(38):1802883.

[94]Wang Y, Yin L, Huang W, et al., 2021. Optoelectronic synaptic devices for neuromorphic computing. Adv Intell Syst, 3(1):2000099.

[95]Wang Y, Zhu YY, Li YY, et al., 2022. Dual-modal optoelectronic synaptic devices with versatile synaptic plasticity. Adv Funct Mater, 32(1):2107973.

[96]Wang ZQ, Zeng T, Ren YY, et al., 2020. Toward a generalized Bienenstock-Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices. Nat Commun, 11(1):1510.

[97]Yan CY, Wen JM, Lin P, et al., 2019. A tunneling dielectric layer free floating gate nonvolatile memory employing type-I core‍–‍shell quantum dots as discrete charge-trapping/tunneling centers. Small, 15(1):1804156.

[98]Yan XB, Pei YF, Chen HW, et al., 2019. Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors. Adv Mater, 31(7):1805284.

[99]Yang FQ, 2021. Size effect on the bandgap change of quantum dots: thermomechanical deformation. Phys Lett A, 401:127346.

[100]Yang J, Choi MK, Kim DH, et al., 2016. Designed assembly and integration of colloidal nanocrystals for device applications. Adv Mater, 28(6):1176-1207.

[101]Yin L, Han C, Zhang QT, et al., 2019. Synaptic silicon-nanocrystal phototransistors for neuromorphic computing. Nano Energy, 63:103859.

[102]Yin L, Pi XD, Yang DR, 2020. Silicon-based optoelectronic synaptic devices. Chin Phys B, 29(7):070703.

[103]Yu JS, Kim I, Kim JS, et al., 2012. Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes. Nanoscale, 4(19):6032-6040.

[104]Zeng T, Yang Z, Liang JB, et al., 2021. Flexible and transparent memristive synapse based on polyvinylpyrrolidone/N-doped carbon quantum dot nanocomposites for neuromorphic computing. Nanoscale Adv, 3(9):2623-2631.

[105]Zhang H, Zhang YT, Yu Y, et al., 2017. Ambipolar quantum-dot-based low-voltage nonvolatile memory with double floating gates. ACS Photon, 4(9):2220-2227.

[106]Zhang XN, Yang HY, Jiang ZG, et al., 2019. Photoresponse of nonvolatile resistive memory device based on all-inorganic perovskite CsPbBr3 nanocrystals. J Phys D Appl Phys, 52(12):125103.

[107]Zhao SY, Ni ZY, Tan H, et al., 2018a. Electroluminescent synaptic devices with logic functions. Nano Energy, 54:383-389.

[108]Zhao SY, Liu XK, Pi XD, et al., 2018b. Light-emitting diodes based on colloidal silicon quantum dots. J Semicond, 39(6):061008.

[109]Zhao SY, Wang Y, Huang W, et al., 2019. Developing near-infrared quantum-dot light-emitting diodes to mimic synaptic plasticity. Sci China Mater, 62(10):1470-1478.

[110]Zhao XL, Ma J, Xiao XH, et al., 2018. Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects. Adv Mater, 30(14):1705193.

[111]Zhao XN, Wang ZQ, Li WT, et al., 2020. Photoassisted electroforming method for reliable low-power organic–inorganic perovskite memristors. Adv Funct Mater, 30(17):1910151.

[112]Zhou S, Ni ZY, Ding Y, et al., 2016. Ligand-free, colloidal, and plasmonic silicon nanocrystals heavily doped with boron. ACS Photon, 3(3):415-422.

[113]Zhu LQ, Xiao H, Liu YH, et al., 2015. Multi-gate synergic modulation in laterally coupled synaptic transistors. Appl Phys Lett, 107(14):143502.

[114]Zhu YB, Wu CX, Xu ZW, et al., 2021. Light-emitting memristors for optoelectronic artificial efferent nerve. Nano Lett, 21(14):6087-6094.

[115]Zhu YY, Huang W, He YF, et al., 2020. Perovskite-enhanced silicon-nanocrystal optoelectronic synaptic devices for the simulation of biased and correlated random-walk learning. Research, 2020:7538450.

[116]Zidan MA, Strachan JP, Lu WD, 2018. The future of electronics based on memristive systems. Nat Electron, 1(1):22-29.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE