Full Text:   <685>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 610

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2025 Vol.8 No.1 P.36-54

http://doi.org/10.1631/bdm.2400114


Enhancing angiogenesis and osseointegration through a double gyroid Ti6Al4V scaffold with triply periodic minimal surface


Author(s):  Hao Liu, Hao Chen, Bin Sun, Danyang Fan, Aobo Zhang, Hanqiang Liu, Hexiang Wei, Wenbo Yang, Yongyue Li, Peng Xia, Qing Han, Jincheng Wang

Affiliation(s):  Department of Orthopedic Surgery, The second hospital of Jilin University, Changchun 130000, Jilin, China; more

Corresponding email(s):   xiapeng@jlu.edu.cn, my.hanqing@163.com

Key Words:  Double gyroid Triply periodic minimal surface Osseointegration Angiogenesis


Share this article to: More

Hao Liu, Hao Chen, Bin Sun, Danyang Fan, Aobo Zhang, Hanqiang Liu, Hexiang Wei, Wenbo Yang, Yongyue Li, Peng Xia, Qing Han, Jincheng Wang. Enhancing angiogenesis and osseointegration through a double gyroid Ti6Al4V scaffold with triply periodic minimal surface[J]. Journal of Zhejiang University Science D, 2025, 8(1): 36-54.

@article{title="Enhancing angiogenesis and osseointegration through a double gyroid Ti6Al4V scaffold with triply periodic minimal surface",
author="Hao Liu, Hao Chen, Bin Sun, Danyang Fan, Aobo Zhang, Hanqiang Liu, Hexiang Wei, Wenbo Yang, Yongyue Li, Peng Xia, Qing Han, Jincheng Wang",
journal="Journal of Zhejiang University Science D",
volume="8",
number="1",
pages="36-54",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/bdm.2400114"
}

%0 Journal Article
%T Enhancing angiogenesis and osseointegration through a double gyroid Ti6Al4V scaffold with triply periodic minimal surface
%A Hao Liu
%A Hao Chen
%A Bin Sun
%A Danyang Fan
%A Aobo Zhang
%A Hanqiang Liu
%A Hexiang Wei
%A Wenbo Yang
%A Yongyue Li
%A Peng Xia
%A Qing Han
%A Jincheng Wang
%J Journal of Zhejiang University SCIENCE D
%V 8
%N 1
%P 36-54
%@ 1869-1951
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/bdm.2400114

TY - JOUR
T1 - Enhancing angiogenesis and osseointegration through a double gyroid Ti6Al4V scaffold with triply periodic minimal surface
A1 - Hao Liu
A1 - Hao Chen
A1 - Bin Sun
A1 - Danyang Fan
A1 - Aobo Zhang
A1 - Hanqiang Liu
A1 - Hexiang Wei
A1 - Wenbo Yang
A1 - Yongyue Li
A1 - Peng Xia
A1 - Qing Han
A1 - Jincheng Wang
J0 - Journal of Zhejiang University Science D
VL - 8
IS - 1
SP - 36
EP - 54
%@ 1869-1951
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/bdm.2400114


Abstract: 
The pore structure of porous scaffolds plays a crucial role in bone repair. The prevalent bone implant structure in clinical practice is the traditional cubic structure. However, the traditional cubic structure exhibits sharp edges and junctions that are not conducive to cell adhesion and growth. In this study, a double gyroid (DG) Ti6Al4V scaffold based on a triply periodic minimal surface (TPMS) structure was devised, and the osseointegration performance of DG structural scaffolds with varying porosities was investigated. Compression tests revealed that the elastic modulus and compressive strength of DG structural scaffolds were sufficient for orthopedic implants. In vitro cellular experiments demonstrated that the DG structure signifi? cantly enhanced cell proliferation, vascularization, and osteogenic differentiation compared to the cubic structure. The DG structure with 55% porosity exhibited the most favorable outcomes. In vivo experiments in rabbits further demonstrated that DG scaffolds could promote neovascularization and bone regeneration and maturation; those with 55% porosity performed best. Comparing the surface area, specific surface area per unit volume, and internal flow distribution characteristics of gyroid and DG structure scaffolds, the latter are more conducive to cell adhesion and growth within scaffolds. This study un? derscored the potential of DG scaffolds based on the TPMS structure in optimizing the pore structure design of titanium scaf? folds, inducing angiogenesis, and advancing the clinical application of titanium scaffolds for repairing bone defects.

通过具有三周期极小曲面的双陀螺 Ti6Al4V 支架 促进血管生成和骨整合

作者:刘昊1,陈昊1,孙彬1,范丹洋2,张奥博1,刘含强1,魏鹤翔11,李永跃1,夏鹏1,韩青1,王金成1
机构:1吉林大学第二医院骨科,中国长春市,130000;2吉林大学第二医院皮肤科,中国长春市,130000
摘要:多孔支架的孔结构在骨修复过程中发挥重要作用。目前临床上常用的骨植入物结构为传统的立方体结构。然而,传统立方体结构具有尖锐边缘或结点,不利于细胞黏附和生长。本研究设计了一种基于三周期极小曲面(TPMS)结构的双陀螺(DG)钛合金骨支架,并探讨了不同孔隙率 DG 结构支架的骨整合性能。压缩试验表明,DG 结构支架的弹性模量和压缩强度足以满足骨科植入物的需求。体外细胞试验表明,与立方体结构相比,DG 结构可以显著促进细胞增殖、成血管分化、成骨分化,且孔隙率为 55%的 DG 结构支架表现最好。家兔体内试验进一步证明,DG 支架可以促进新血管形成和骨组织的再生和成熟,且孔隙率为55%的 DG 支架表现最优。此外,通过比较单陀螺和 DG 结构支架的表面积、单位体积比表面积和内部流动分布特征发现,后者更有利于细胞黏附和生长。本研究强调了基于 TPMS 结构的 DG 支架在优化钛支架孔隙结构设计、诱导血管生成及骨缺损修复临床应用中的潜力。

关键词:双陀螺;三周期极小曲面;骨整合;血管生成

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE