CLC number: TH145
On-line Access:
Received: 2000-12-25
Revision Accepted: 2001-03-06
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5072
LU Xiao-nan, DENG Fu-min, CHEN Xiao-hua, ZHANG Xiao-bin, WANG Miao, LI Wen-zhu. CONFORMATION AND MICROSTRUCTURE OF CARBON NANOFIBERS DEPOSITED ON FOAM Ni[J]. Journal of Zhejiang University Science A, 2001, 2(4): 372-375.
@article{title="CONFORMATION AND MICROSTRUCTURE OF CARBON NANOFIBERS DEPOSITED ON FOAM Ni",
author="LU Xiao-nan, DENG Fu-min, CHEN Xiao-hua, ZHANG Xiao-bin, WANG Miao, LI Wen-zhu",
journal="Journal of Zhejiang University Science A",
volume="2",
number="4",
pages="372-375",
year="2001",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2001.0372"
}
%0 Journal Article
%T CONFORMATION AND MICROSTRUCTURE OF CARBON NANOFIBERS DEPOSITED ON FOAM Ni
%A LU Xiao-nan
%A DENG Fu-min
%A CHEN Xiao-hua
%A ZHANG Xiao-bin
%A WANG Miao
%A LI Wen-zhu
%J Journal of Zhejiang University SCIENCE A
%V 2
%N 4
%P 372-375
%@ 1869-1951
%D 2001
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2001.0372
TY - JOUR
T1 - CONFORMATION AND MICROSTRUCTURE OF CARBON NANOFIBERS DEPOSITED ON FOAM Ni
A1 - LU Xiao-nan
A1 - DENG Fu-min
A1 - CHEN Xiao-hua
A1 - ZHANG Xiao-bin
A1 - WANG Miao
A1 - LI Wen-zhu
J0 - Journal of Zhejiang University Science A
VL - 2
IS - 4
SP - 372
EP - 375
%@ 1869-1951
Y1 - 2001
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2001.0372
Abstract: Bundles of pure carbon nanofibers were prepared by catalytic decomposition of acetylene on foam Ni. The morphological and structural characteristics of the carbon nanostructures, in the as-prepared state, were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HTEM). A special conformation of carbon nanofibers composed of segmented structures was found among the products by both SEM and TEM observations. Further HTEM examination indicated that the segments were stacked with well ordered graphite platelets arranged perpendicular to the axis of the filaments.
[1] Audier, M., Oberlin, A., Oberlin, M. et al., 1981. Morphology and crystalline order in catalytic carbons. Carbon, 19:217.
[2] Baker, R. T. K., Barber, M. A., Harris, P.S. et al., 1972. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal., 26:51.
[3] Baker, R. T. K., Harris, P. S., Thomas, R. B. et al., 1973. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J.Catal., 30:86.
[4] Baker, R. T. K., Harris, P. S., Terry, S., 1975. Unique form of rilamentous carbon. Nature, 253:37.
[5] Boehm, H. P., 1973. Carbon from carbon monoxide disproportionation on nickel and iron catalysis: morphological studies and possible growth mechanisms. Carbon, 11:583.
[6] Chambers, A., Park, C., Baker, R. T. K. et al., 1998. Hydrogen storage in graphite nanoribers. J. Phys. Chem. B, 102(2):4253.
[7] Chen, P., Zhan, H. B., Lin, G.D. et al., 1995. Growth of carbon nanotubes by catalytic decomposition of CH 4 or CO on a Ni-MgO catalyst. Carbon, 35:1495.
[8] Derbyshire, F. J., Trimm, D. L., 1975. Kinetics of the deposition of pyrolytic carbon on nickel. Carbon, 13:189.
[9] Fan, Y.Y., Li, F., Chen, H.M. et al., 1998. Preparation, morphology and microstructure of diameter controllable vapor-grown carbon nanofibers. J. Mater. Res., 13:2342.
[10] Fan, Y. Y., Liu, M., Liao, B. et al., 1999. Hydrogen storage of vapor-grown carbon nanofibers. Chinese J. Materials Research, 13 (3):230(in Chinese).
[11] Lobo, L. S., Trimm, D. L., 1973. Carbon formation from light hydrocarbons on nickel. J. Catal., 29:15.
[12] Motojima, S., Kawaguchi, M., Nozaki, K. et al., 1991. Preparation of coiled carbon fibers by catalytic pyrolysis of acetylene, and its morphology and extension characteristics. Carbon, 29:379.
[13] Oberin, A., Endo, M., Coyama, T., 1976. Filamentous growth of carbon through benzene decomposition. J.Cryst. Growth, 32:335.
[14] Oya,A., Otani,S., 1979. Catalytic graphitization of carbon by various metals. Carbon, 17:131.
[15] Renschaw, G. D., Roscoe, C., Walker, P. L., 1971. Disproportionation of CO over cobalt and nickel single crystals. J. Catal., 22:394.
[16] Rodriguez, N. M., 1993. A review of catalytically grown carbon nanoribers. J. Mater. Res., 8(12):3233.
[17] Rodriguez, N. M., Chambers, A., Baker, R. T. K., 1995. Catalytic engineering of carbon nanostructure. Langmuir, 11:3862.
[18] Saito, Y., Yoshikawa, T., 1993. Bamboo-shaped carbon tube rillled partially with nickel. J. Crystal Growth,134:154.
[19] Soneda, Y., Makino, M., 2000. Formation and texture of carbon nanorilaments by the catalytic decomposition of CO on stainless-steel plate. Carbon, 38:475.
[20] Tavares,M.T., Bemado, C.A., Alstrup, I. et al., 1986. Reactivity of carbon deposited on nickel-copper alloy catalysts from the decomposition of methane. J. Catal., 100:545.
[21] Tibbetts, G. G., 1984. Why are carbon rilaments tubular? J. Cryst. Growth, 66:632.
Open peer comments: Debate/Discuss/Question/Opinion
<1>