Full Text:   <3049>

CLC number: TN919.8

On-line Access: 

Received: 2005-12-05

Revision Accepted: 2006-02-25

Crosschecked: 0000-00-00

Cited: 0

Clicked: 5230

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.10 P.1690-1694

http://doi.org/10.1631/jzus.2006.A1690


Proposal for a cross layer scheme for real-time wireless video


Author(s):  JEYARAJ Arulsaravana, CHENG Liang, EL Zarki Magda

Affiliation(s):  EECS Department, the Henry Samueli School of Engineering, University of California, Irvine, CA-92697, USA; more

Corresponding email(s):   asaravan@uci.edu, liang.cheng@gmail.com, elzarki@uci.edu

Key Words:  MIMO, V-BLAST, Adaptive modulation, Diversity, Constant bit rate (CBR), Cross layer design, Power control, Fine granular scalability (FGS)


JEYARAJ Arulsaravana, CHENG Liang, EL Zarki Magda. Proposal for a cross layer scheme for real-time wireless video[J]. Journal of Zhejiang University Science A, 2006, 7(10): 1690-1694.

@article{title="Proposal for a cross layer scheme for real-time wireless video",
author="JEYARAJ Arulsaravana, CHENG Liang, EL Zarki Magda",
journal="Journal of Zhejiang University Science A",
volume="7",
number="10",
pages="1690-1694",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1690"
}

%0 Journal Article
%T Proposal for a cross layer scheme for real-time wireless video
%A JEYARAJ Arulsaravana
%A CHENG Liang
%A EL Zarki Magda
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 10
%P 1690-1694
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1690

TY - JOUR
T1 - Proposal for a cross layer scheme for real-time wireless video
A1 - JEYARAJ Arulsaravana
A1 - CHENG Liang
A1 - EL Zarki Magda
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 10
SP - 1690
EP - 1694
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1690


Abstract: 
This paper focuses on the design of the cross layer between the video application layer and the MIMO physical layer. MIMO physical layer research has promised an enormous increase in the capacity of wireless communication systems. Also MIMO wireless systems operate under fading conditions where the channel faces arbitrary fluctuations. Since the wireless channel changes over each coherence period, the capacity of the wireless channel, given the power constraints, changes. Hence to make efficient use of the available capacity one needs to adapt the video bit rate. However it is impossible to adapt at the application layer as changing the parameters of the video takes more time than the coherence period of the channel. In this paper we address this problem through a novel solution and also investigate its performance through a simulation study.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Albanese, A., Blomer, J., Edmonds, J., Luby, M., Sudan, M., 1996. Priority encoding transmission. IEEE Trans. Inform. Theory, 42(6):1737-1744.

[2] Atay-Kayis, A., Massam, H., 2005. A Monte Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models. Biometrika, 92(2):317-335.

[3] Cheng, L., El Zarki, M., 2003. An Adaptive Error Resilient Video Encoder. Visual Communications and Image Processing.

[4] Cheng, L., El Zarki, M., 2004a. Perceptual Quality Feedback Based Progressive Frame-level Refreshing for Robust Video Communication. Wireless Communication and Networking Conference.

[5] Cheng, L., El Zarki, M., 2004b. PGOP: An Error Resilient Technique for Low Bit Rate and Low Latency Video Communications. Picture Coding Symposium (PCS’04). San Francisco, CA, USA.

[6] Chuah, C.N., Kahn, J.M., Tse, D., 1998. Capacity of Multi-antenna Array Systems in Indoor Wireless Environment. IEEE GlobeCom, p.1203-1214.

[7] Farell, R.H., 1985. Multivariate Calculation—Use of the Continuous Groups. Springer Series in Statistics.

[8] Foschini, G.J., 1996. Layered space-time architecture for wireless communication in a fading environment when using multiple antennas. Bell Laboratories Technical Journal, 1(2):41-59.

[9] Kullback, S., 1934. An application of characteristic functions to the distribution problem of statistics. Annals of Mathematical Statistics, 5:263-307.

[10] Goldsmith, A.J., Chua, S.G., 1997. Variable-rate variable-power MQAM for fading channels. IEEE Trans. Comm., 45(10):1218-1230.

[11] ISO-IEC/JTC1/SC92/WG11, 1993. Test Model 5.

[12] Luo, W.J., El Zarki, M., 1997. Quality control for video over broadband networks. IEEE J. Selected Areas of Communications, 11:1029-1039.

[13] Microsoft Corporation, 2000. ISO/IEC 14496 (MPEG-4) Video Reference Software. Microsoft-FPDAM1-1.0-000403.

[14] Raleigh, G.G., Cioffi, J.M., 1996. Spatio-temporal Coding for Wireless Communication. Proc. 1996 IEEE Globecom, 3:1809-1814.

[15] Raleigh, G.G., Cioffi, J.M., 1998. Spatio-temporal coding for wireless communication. IEEE Trans. Comm., 46(3):357-366.

[16] Sun, M.T., Reibman, A.R., 2000. Compressed Video over Networks: Wireless Video. Marcel Dekker, New York.

[17] van der Schaar, M., Hayder, R., 2002. Adaptive motion compensation fine-granular-scalability (AMC-FGS) for wireless video. IEEE Transactions on Circuits and Systems for Video Technology, 12(6):360-371.

[18] van der Schaar, M., Krishnamachari, S., Choi, S., Xu, X., 2003. Adaptive cross-layer protection strategies for robust scalable video transmission over 802.11 WLANs. IEEE J. Selected Areas of Communications, 21(10):1752-1763.

[19] Wilks, S.S., 1947. Mathematical Statistics. Princeton University Press.

[20] Winters, J.H., 1998. Smart Antenna for Wireless Systems. IEEE Personal Communications, p.23-27.

[21] Winters, J.H., Salz, J., Gitlin, R.D., 1994. The impact of antenna diversity on the capacity of wireless communication systems. IEEE Trans. Comm., 42(4):1740-1751.

[22] Witkovsky, V., 2001. Computing the distribution of a linear combination of inverted gamma variables. Kybernetika, 37(1):79-90.

[23] Witkovsky, V., 2002. Exact distribution of positive linear combinations of inverted chi-square random variables with odd degrees of freedom. Statistics & Probability Letters, 56:4550.

[24] Wolniansky, P.W., Foschini, G.J., Golden, G.D., Valenzuela, R.A., 1998. VBLAST: An Architecture for Realizing Very High Data Rates over the Rich-Scattering Wireless Channel. Proc. ISSSE-98. Pisa, Italy.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE