CLC number: O34
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-08-05
Cited: 0
Clicked: 5078
Yang Gao. Green’s functions for infinite planes and half-planes consisting of quasicrystal bi-materials[J]. Journal of Zhejiang University Science A, 2010, 11(10): 835-840.
@article{title="Green’s functions for infinite planes and half-planes consisting of quasicrystal bi-materials",
author="Yang Gao",
journal="Journal of Zhejiang University Science A",
volume="11",
number="10",
pages="835-840",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000119"
}
%0 Journal Article
%T Green’s functions for infinite planes and half-planes consisting of quasicrystal bi-materials
%A Yang Gao
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 10
%P 835-840
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000119
TY - JOUR
T1 - Green’s functions for infinite planes and half-planes consisting of quasicrystal bi-materials
A1 - Yang Gao
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 10
SP - 835
EP - 840
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000119
Abstract: This paper deals with the combination of point phonon and phason forces applied in the interior of infinite planes and half-planes of 1D quasicrystal bi-materials. Based on the general solution of quasicrystals, a series of displacement functions are adopted to obtain green’;s functions for infinite planes and bi-material planes composed of two half-planes in the closed form, when the two half-planes are supposed to be ideally bonded or to be in smooth contact. Since the physical quantities can be readily calculated without the need of performing any transform operations, green’;s functions are very convenient to be used in the study of point defects and inhomogeneities in the quasicrystal materials.
[1]Chen, W.Q., Ma, Y.L., Ding, H.J., 2004. On three-dimensional elastic problems of one-dimensional hexagonal quasicrystal bodies. Mechanics Research Communications, 31(6):633-641.
[2]Ding, D.H., Yang, W.G., Hu, C.Z., Wang, R.H., 1993. Generalized elasticity theory of quasicrystals. Physical Review B, 48(10):7003-7010.
[3]Ding, H.J., Chen, B., Liang, J., 1996. General solutions for coupled equations for piezoelectric media. International Journal of Solids and Structures, 33(16):2283-2298.
[4]Ding, H.J., Chen, B., Liang, J., 1997a. On the Green’s function for two-phase transversely isotropic piezoelectric media. International Journal of Solids and Structures, 34(23):3041-3057.
[5]Ding, H.J., Wang, C.Q., Chen, W.Q., 1997b. Green’s functions for a two-phase infinite piezoelectric plane. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 453(1966):2241-2257.
[6]Fan, T.Y., Mai, Y.W., 2004. Elasticity theory, fracture mechanics, and some relevant thermal properties of quasi-crystalline materials. Applied Mechanics Reviews, 57(5):325-343.
[7]Gao, Y., Zhao, B.S., 2006. A general treatment of three-dimensional elasticity of quasicrystals by an operator method. Physica Status Solidi (B), 243(15):4007-4019.
[8]Gao, Y., Xu, B.X., Zhao, B.S., Chang, T.C., 2008. New general solutions of plane elasticity of one-dimensional quasicrystals. Physica Status Solidi (B), 245(1):20-27.
[9]Hu, C.Z., Wang, R.H., Ding, D.H., 2000. Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Reports on Progress in Physics, 63(1):1-39.
[10]Huang, K.F., Wang, M.Z., 1991. Fundamental solution of bi-material elastic space. Science in China Series A: Mathematics Physics Astronomy & Technological Sciences, 34(3):309-315.
[11]Ronchetti, M., 1987. Quasicrystals, an introduction overview. Philosophical Magazine Part B, 56(2):237-249.
[12]Shechtman, D., Blech, I., Gratias, D., Cahn, J.W., 1984. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53(20):1951-1953.
[13]Socolar, J.E.S., Lubensky, T.C., Steinhardt, P.J., 1986. Phonons, phasons and dislocations in quasi-crystals. Physical Review B, 34(5):3345-3360.
[14]Ting, T.C.T., 1996. Anisotropic Elasticity: Theory and Applications. Oxford University Press, Oxford.
[15]Wang, R.H., Yang, W.G., Hu, C.Z., Ding, D.H., 1997. Point and space groups and elastic behaviours of one-dimensional quasicrystals. Journal of Physics Condensed Matter, 9(11):2411-2422.
[16]Wollgarten, M., Beyss, M., Urban, K., Liebertz, H., Koster, U., 1993. Direct evidence for plastic deformation of quasicrystals by means of a dislocation mechanism. Physical Review Letters, 71(4):549-552.
Open peer comments: Debate/Discuss/Question/Opinion
<1>