Full Text:   <3585>

Summary:  <2351>

CLC number: U448.27

On-line Access: 2014-05-04

Received: 2013-10-16

Revision Accepted: 2014-03-21

Crosschecked: 2014-04-22

Cited: 0

Clicked: 9906

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.5 P.351-363


Seismic response study on a multi-span cable-stayed bidge scale model under multi-support excitations. Part I: shaking table tests*

Author(s):  Zhou-hong Zong1, Rui Zhou2, Xue-yang Huang3, Zhang-hua Xia3

Affiliation(s):  1. School of Civil Engineering, Southeast University, Nanjing 210096, China; more

Corresponding email(s):   zongzh@seu.edu.cn

Key Words:  Multi-span cable-stayed bridge, Earthquake shaking table tests, Uniform excitations, Non-uniform excitations, Traveling wave effect, Shear failure of bearing

Zhou-hong Zong, Rui Zhou, Xue-yang Huang, Zhang-hua Xia. Seismic response study on a multi-span cable-stayed bridge scale model under multi-support excitations. Part I: shaking table tests[J]. Journal of Zhejiang University Science A, 2014, 15(5): 351-363.

@article{title="Seismic response study on a multi-span cable-stayed bridge scale model under multi-support excitations. Part I: shaking table tests",
author="Zhou-hong Zong, Rui Zhou, Xue-yang Huang, Zhang-hua Xia",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Seismic response study on a multi-span cable-stayed bridge scale model under multi-support excitations. Part I: shaking table tests
%A Zhou-hong Zong
%A Rui Zhou
%A Xue-yang Huang
%A Zhang-hua Xia
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 5
%P 351-363
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300339

T1 - Seismic response study on a multi-span cable-stayed bridge scale model under multi-support excitations. Part I: shaking table tests
A1 - Zhou-hong Zong
A1 - Rui Zhou
A1 - Xue-yang Huang
A1 - Zhang-hua Xia
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 5
SP - 351
EP - 363
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300339

With the rapid development of bridge engineering in China, multi-span cable-stayed bridges have become one of the main structures of modern highways and railways for crossing rivers or straits. In this study, a 1:100 scale model of a three-tower cable-stayed bridge was tested using a shaking table array system. The mechanism associated with the seismic response of the scale model under uniform and non-uniform excitations was clarified. The results from the tests indicated that: (1) the strong vibration responses of the main girder and towers under four different horizontal earthquake wave excitations were identified, and the seismic responses of the scale model were most evident under uniform Jiangxin (JX) wave excitation; (2) the seismic performances of the main girder and towers of the scale model were adversely affected by traveling wave effects, especially when the wave velocity exceeded 616 m/s, which suggests that traveling wave effects should be considered in the seismic design of multi-tower cable-stayed bridges; (3) when the peak acceleration value of the El Centro (EC) wave reached 4.0 m/s2, shear failure of the bearing of the middle tower first appeared. This kind of shaking table tests will help to improve our understanding of dynamic performance, and will be especially useful in the design process and numerical simulation of multi-span cable-stayed bridges with large span subjected to spatially varying earthquake ground motions.


研究方法:1.基于动力相似理论,设计与制作了多塔斜拉桥的全桥比例缩尺模型(图2);2.利用地震模拟振动台多台阵试验,根据在不同地震波作用下和考虑行波效应后多塔斜拉桥模型的主梁和主塔响应,分析了多塔斜拉桥在多点一致激励和多点非一致激励的地震响应特性 (图5~图8);3.根据在地震波不同强度作用下多塔斜拉桥模型的主梁和主塔响应,分析了多塔斜拉桥在强震下的破坏模式和地震响应(图9)。
重要结论:1.江心波作用下该多塔斜拉桥的地震响应大于其他三种地震波;2.多塔斜拉桥在抗震设计时需要考虑行波效应的影响;3.在El-Centro波的加速度峰值高达4.0 m/s2时,多塔斜拉桥模型出现了支座破坏。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Abdel-Ghaffar, A.M., Khalifa, M., 1991. Importance of cable vibration in dynamics of cable-stayed bridges. Journal of Engineering Mechanics, 117(11):2571-2589. 

[2] Chen, Y., Feng, M., Soyoz, S., 2008. Large-scale shake table test verification of bridge condition assessment methods. Journal of Structural Engineering, 134(7):1235-1245. 

[3] Fang, Y., Li, J.Z., Peng, T.B., 2011. Influence of traveling-wave effect on seismic response of a long-span multi-span cable stayed bridge. Journal of Vibration and Shock, (in Chinese),29(10):148-152. 

[4] Gattulli, V., Lepidi, M., 2007. Localization and veering in cable-stayed bridge dynamics. Computer & Structures, 85(21-22):1661-1668. 

[5] Gimsing, N.J., Georgakis, C.T., 2011.  Cable Supported Bridges: Concept and Design. Wiley,Chichester, UK :150-160. 

[6] Harris, H.G., Sabnis, G.M., 1999. Structural Modeling and Experimental Techniques, CRC Press,:121-124. 

[7] Huang, B.F., Lu, W.S., Zong, Z.H., 2008. Study on model experimental methodology utilizing the multiple earthquake simulation shake table system. China Civil Engineering Journal, (in Chinese),41(3):46-52. 

[8] Kawashima, K., Unjoh, S., Tunomoto, M., 1993. Estimation of damping ratio of cable-stayed bridges for seismic design. ASCE Journal of Structural Engineering, 119(4):1015-1031. 

[9] Kitazawa, M., Fujita, K., 1989. Seismic Test on Higashi-Kobe Bridge: Cable Stayed Bridge-using Scale Models. Earthquake Behavior of Buried Pipelines, ASME Pressure Vessels and Piping Conference, 162:131

[10] Mylonakis, G., Papastamatiou, D., Psycharis, J., 2001. Simplified modeling of bridge response on soft soil to non-uniform seismic excitation. ASCE Journal of Bridge Engineering, 6(6):587-597. 

[11] Nazmy, A.S., Abdel-Ghaffar, A.M., 1990. Three-dimensional nonlinear static analysis of cable-stayed bridges. Journal of Computers and Structures, 34(2):257-272. 

[12] Nazmy, A.S., Abdel-Ghaffar, A.M., 1990. Nonlinear earthquake-response analysis of long-span cable-stayed bridges: theory. International Journal of Earthquake Engineering and Structural Dynamics, 19(1):45-62. 

[13] Nazmy, A.S., Abdel-Ghaffar, A.M., 1992. Effects of ground motion spatial variability on the response of cable-stayed bridges. Earthquake Engineering & Structural Dynamics, 21:1-21. 

[14] Raheem, S.E.A., Hayashikawa, T., Dorka, U., 2011. Ground motion spatial variability effects on seismic response control of cable-stayed bridges. Earthquake Engineering and Engineering Vibration, 10(1):37-49. 

[15] Ren, W.X., Makoto, O., 1999. Elastic-plastic seismic behavior of long span cable-stayed bridges. ASCE Journal of Bridge Engineering, 4(3):194-203. 

[16] Shoji, G., Kitahara, J., Kojima, A., 2008. Mechanism of seismic response of a PC cable-stayed bridge subject to a long-period seismic excitation. Structural Engineering/Earthquake Engineering, 25(2):982-1001. 

[17] Virlogeux, M., 2001. Bridges with multiple cable-stayed spans. Structural Engineering International, 11(1):61-82. 

[18] Yang, C.Y., Cheung, M., 2011. Shake table test of cable-stayed bridge subject to non-uniform excitation. Procedia Engineering, 14:931-938. 

[19] Zhang, C.L., 2009.  Shaking Table Test for the Effect of Ground Motion Input to Seismic Response of Long-span Bridge. (in Chinese), Chongqing Jiaotong University,Chongqing, China :25-40. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE