CLC number: U445.467
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-03-18
Cited: 0
Clicked: 4143
Jin-feng Wang, Jiang-tao Zhang, Zhong-xuan Yang, Rong-qiao Xu. Control measures for thermal effects during placement of span-scale girder segments on continuous steel box girder bridges[J]. Journal of Zhejiang University Science A, 2020, 21(4): 255-267.
@article{title="Control measures for thermal effects during placement of span-scale girder segments on continuous steel box girder bridges",
author="Jin-feng Wang, Jiang-tao Zhang, Zhong-xuan Yang, Rong-qiao Xu",
journal="Journal of Zhejiang University Science A",
volume="21",
number="4",
pages="255-267",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1900310"
}
%0 Journal Article
%T Control measures for thermal effects during placement of span-scale girder segments on continuous steel box girder bridges
%A Jin-feng Wang
%A Jiang-tao Zhang
%A Zhong-xuan Yang
%A Rong-qiao Xu
%J Journal of Zhejiang University SCIENCE A
%V 21
%N 4
%P 255-267
%@ 1673-565X
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1900310
TY - JOUR
T1 - Control measures for thermal effects during placement of span-scale girder segments on continuous steel box girder bridges
A1 - Jin-feng Wang
A1 - Jiang-tao Zhang
A1 - Zhong-xuan Yang
A1 - Rong-qiao Xu
J0 - Journal of Zhejiang University Science A
VL - 21
IS - 4
SP - 255
EP - 267
%@ 1673-565X
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1900310
Abstract: In this study, we examined the thermal effects throughout the process of the placement of span-scale girder segments on a 6×110-m continuous steel box girder in the Hong Kong-Zhuhai-Macao Bridge. Firstly, when a span-scale girder segment is temporarily stored in the open air, temperature gradients will significantly increase the maximum reaction force on temporary supports and cause local buckling at the bottom of the girder segment. Secondly, due to the temperature difference of the girder segments before and after girth-welding, some residual thermal deflections will appear on the girder segments because the boundary conditions of the structure are changed by the girth-welding. Thirdly, the thermal expansion and thermal bending of girder segments will cause movement and rotation of bearings, which must be considered in setting bearings. We propose control measures for these problems based on finite element method simulation with field-measured temperatures. The local buckling during open-air storage can be avoided by reasonably determining the appropriate positions of temporary supports using analysis of overall and local stresses. The residual thermal deflections can be overcome by performing girth-welding during a period when the vertical temperature difference of the girder is within 1 °C, such as after 22:00. Some formulas are proposed to determine the pre-set distances for bearings, in which the movement and rotation of the bearings due to dead loads and thermal loads are considered. Finally, the feasibility of these control measures in the placement of span-scale girder segments on a real continuous girder was verified: no local buckling was observed during open-air storage; the residual thermal deflections after girth-welding were controlled within 5 mm and the residual pre-set distances of bearings when the whole continuous girder reached its design state were controlled within 20 mm.
[1]Ding YL, Li AQ, 2011. Temperature-induced variations of measured modal frequencies of steel box girder for a long-span suspension bridge. International Journal of Steel Structures, 11(2):145-155.
[2]Ding YL, Zhou GD, Li AQ, et al., 2012. Thermal field characteristic analysis of steel box girder based on long-term measurement data. International Journal of Steel Structures, 12(2):219-232.
[3]Emerson M, 1979. Bridge Temperatures for Setting Bearings and Expansion Joints. Technical Report No. SR479, Transport and Road Research Laboratory, Wokingham, UK.
[4]Kim SH, Cho KI, Won JH, et al., 2009. A study on thermal behaviour of curved steel box girder bridges considering solar radiation. Archives of Civil and Mechanical Engineering, 9(3):59-76.
[5]Kim SH, Park SJ, Wu JX, et al., 2015. Temperature variation in steel box girders of cable-stayed bridges during construction. Journal of Constructional Steel Research, 112(1):80-92.
[6]Kowalski R, Głowacki M, Wróblewska J, 2018. Thermal bowing of reinforced concrete elements exposed to non-uniform heating. Archives of Civil Engineering, 64(4):247-264.
[7]Kromanis R, Kripakaran P, Harvey B, 2016. Long-term structural health monitoring of the Cleddau Bridge: evaluation of quasi-static temperature effects on bearing movements. Structure and Infrastructure Engineering, 12(10):1342-1355.
[8]Lee JH, Jeong YS, Kim WS, 2016. Buckling behavior of steel girder in integral abutment bridges under thermal loadings in summer season during deck replacement. International Journal of Steel Structures, 16(4):1071-1082.
[9]Li CX, Yang N, Zhang YP, et al., 2009. The sunlight thermal gradient of the steel box girder and the deformation of the last girder in incremental launching construction of Hangzhou Jiangdong Bridge. Journal of Transport Science and Engineering, 25(1):39-44 (in Chinese).
[10]Lucas JM, Berred A, Louis C, 2003. Thermal actions on a steel box girder bridge. Proceedings of the Institution of Civil Engineers–Structures and Buildings, 156(2):175-182.
[11]Malik P, Kadoli R, Ganesan N, 2007. Effect of boundary conditions and convection on thermally induced motion of beams subjected to internal heating. Journal of Zhejiang University-SCIENCE A, 8(7):1044-1052.
[12]Miao CQ, Shi CH, 2013. Temperature gradient and its effect on flat steel box girder of long-span suspension bridge. Science China Technological Sciences, 56(8):1929-1939.
[13]MOHURD (Ministry of Housing and Urban-Rural Development of the People’s Republic of China), 2003. Code for Design of Steel Structures, GB50017-2003. National Standards of the People’s Republic of China, Beijing, China (in Chinese).
[14]Moorty S, Roeder CW, 1992. Temperature-dependent bridge movements. Journal of Structural Engineering, 118(4):1090-1105.
[15]Tong M, Tham LG, Au FTK, et al., 2001. Numerical modelling for temperature distribution in steel bridges. Computers & Structures, 79(6):583-593.
[16]Tong M, Tham LG, Au FTK, 2002. Extreme thermal loading on steel bridges in tropical region. Journal of Bridge Engineering, 7(6):357-366.
[17]Wang GX, Ding YL, Wang XJ, et al., 2014. Long-term temperature monitoring and statistical analysis on the flat steel-box girder of Sutong Bridge. Journal of Highway and Transportation Research and Development (English Edition), 8(4):63-68.
[18]Wang JF, Zhang L, Xiang HW, et al., 2016. Temperature effect during construction of non-navigable bridge of Hong Kong-Zhuhai-Macao Bridge over deep water area. China Journal of Highway and Transport, 29(12):70-77 (in Chinese).
[19]Wang JF, Xu ZY, Fan XL, et al., 2017. Thermal effects on curved steel box girder bridges and their countermeasures. Journal of Performance of Constructed Facilities, 31(2):04016091.
[20]Xu YL, Chen B, Ng CL, et al., 2010. Monitoring temperature effect on a long suspension bridge. Structural Control and Health Monitoring, 17(6):632-653.
[21]Zhou GD, Yi TH, 2013. Thermal load in large-scale bridges: a state-of-the-art review. International Journal of Distributed Sensor Networks, 161(4):85-93.
Open peer comments: Debate/Discuss/Question/Opinion
<1>