Full Text:   <2804>

CLC number: Q943.2

On-line Access: 2010-11-04

Received: 2010-04-15

Revision Accepted: 2010-05-18

Crosschecked: 2010-09-28

Cited: 6

Clicked: 6204

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2010 Vol.11 No.11 P.851-861


Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity

Author(s):  Qing-bin Wang, Wen Xu, Qing-zhong Xue, Wei-ai Su

Affiliation(s):  Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai 200032, China, School of Resource and Environment Management, Guizhou College of Finance and Economics, Guiyang 550004, China

Corresponding email(s):   xueqingzhong@hotmail.com, zstressc@online.sh.cn

Key Words:  Brassica compestris L. spp. chinensis, codA, Stress, Glycine betaine, Net photosynthetic rate (Pn)

Qing-bin Wang, Wen Xu, Qing-zhong Xue, Wei-ai Su. Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity[J]. Journal of Zhejiang University Science B, 2010, 11(11): 851-861.

@article{title="Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity",
author="Qing-bin Wang, Wen Xu, Qing-zhong Xue, Wei-ai Su",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity
%A Qing-bin Wang
%A Wen Xu
%A Qing-zhong Xue
%A Wei-ai Su
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 11
%P 851-861
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000137

T1 - Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity
A1 - Qing-bin Wang
A1 - Wen Xu
A1 - Qing-zhong Xue
A1 - Wei-ai Su
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 11
SP - 851
EP - 861
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000137

Transgenic Brassica compestris L. spp. chinensis plants expressing a choline oxidase (codA) gene from Arthrobacter globiformis were obtained through Agrobacterium tumefaciens-mediated transformation. In the transgenic plants, codA gene expression and its product transportation to chloroplasts were detected by the enzyme-linked immunosorbent assay (ELISA) examination, immunogold localization, and 1H-nuclear magnetic resonance (1H-NMR). stress tolerance was evaluated in the T3 plants under extreme temperature and salinity conditions. The plants of transgenic line 1 (L1) showed significantly higher net photosynthetic rate (Pn) and Pn recovery rate under high (45 °C, 4 h) and low temperature (1 °C, 48 h) treatments, and higher photosynthetic rate under high salinity conditions (100, 200, and 300 mmol/L NaCl, respectively) than the wild-type plants. The enhanced tolerance to high temperature and high salinity stresses in transgenic plants is associated with the accumulation of betaine, which is not found in the wild-type plants. Our results indicate that the introduction of codA gene from Arthrobacter globiformis into Brassica compestris L. spp. chinensis could be a potential strategy for improving the plant tolerance to multiple stresses.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Alia, Hayashi, H., Sakamoto, A., Murata, N., 1998a. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J., 16(2):155-161.

[2]Alia, Hayashi, H., Chen, T.H.H., Murata, N., 1998b. Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ., 21(2):232-239.

[3]Alia, Kondo, Y., Sakamoto, A., Nonaka, H., Hayashi, H., Saradhi, P.P., Chen, T.H.H., Murata, N., 1999. Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol. Biol., 40(2):279-288.

[4]Blumwald, E., Grover, A., 2006. Salt Tolerance. In: Halford, N. (Ed.), Plant Biotechnology, Current and Future Applications of Genetically Modified Crops. John Wiley & Sons, Ltd., Chichester, UK, p.206-224.

[5]Bohnert, H.J., Jensen, R.G., 1996. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol., 14(3):89-97.

[6]Bohnert, H.J., Nelson, D.E., Jensen, R.G., 1995. Adaptations to environmental stresses. Plant Cell, 7(7):1099-1111.

[7]Chen, H.H.T., Murata, N., 2008. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci., 13(9):499-505.

[8]Cushman, J.C., Meyer, G., Michalowski, C.B., Schmitt, J.M., Bohnert, H.J., 1989. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. The Plant Cell, 1(7):715-725.

[9]Gorham, J., 1995. Betaines in Higher Plants—Biosynthesis and Role in Stress Metabolism. In: Wallsgrove, R.M. (Ed.), Amino Acids and Their Derivatives in Higher Plants. Cambridge University Press, Cambridge, p.171-203.

[10]Hayashi, H., Alia, Mustardy, L., Deshnium, P., Ida, M., Murata, N., 1997. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J., 12(1):133-142.

[11]Hayashi, H., Alia, Sakamoto, A., Nonaka, H., Chen, T.H.H., Murata, N., 1998. Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene (codA) for choline oxidase. J. Plant Res., 111(2):357-362.

[12]He, P.M., Zhang, D.B., Liang, W.Q., Yao, Q.H., Zhang, R.X., 2001. Expression of choline oxidase (codA) enhances salt tolerance of the tobacco. Acta Biochem. Biophys. Sin., 33(5):519-524 (in Chinese).

[13]Holmström, K.O., Somersalo, S., Mandal, A., Palva, T.E., Welin, B., 2000. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J. Exp. Bot., 51(343):177-185.

[14]Huang, J., Hirji, R., Adam, L., Rozwadowski, K.L., Hammerlindl, J.K., Keller, W.A., Selvaraj, G., 2000. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol., 122(3):747-756.

[15]Kramer, H.J., Schmidt, R., Günthe, R.A., Becker, G., Suzuki, Y., Seeger, W., 1995. ELISA technique for quantification of surfactant protein B (SP-B) in bronchoalveolar lavage fluid. Am. J. Respir. Crit. Care Med., 152(5):1540-1544.

[16]Mäkelä, P., Munns, R., Colmer, T.D., Condon, A.G., Peltonen-Sainio, P., 1998. Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt- or drought-stressed tomato. Aust. J. Plant Physiol., 25(6):655-663.

[17]Mohanty, A., Kathuria, H., Ferjani, A., Sakamoto, A., Mohanty, P., Murata, N., Tyagi, A.K., 2002. Transgenics of an elite indica rice variety Pusa Basmati 1 harboring the codA gene are highly tolerant to salt stress. Theor. Appl. Genet., 106(1):51-57.

[18]Mustardy, L., Cunningham, F.X.Jr., Gantt, E., 1990. Localization and quantitation of chloroplast enzymes and light-harvesting components using immunocytochemical methods. Plant Physiol., 94(1):334-340.

[19]Park, E.J., Jeknic, Z., Pino, M.T., Murata, N., Chen, T.H.H., 2007. Glycinebetaine accumulation in chloroplasts is more effective than that in cytosol in protecting transgenic tomato plants against abiotic stress. Plant Cell Environ., 30(8):994-1005.

[20]Parvanova, D., Ivanov, S., Konstantinova, T., Karanov, E., Atanassov, A., Tsvetkov, T., Alexieva, V., Djilianov, D., 2004. Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol. Biochem., 42(1):57-63.

[21]Prasad, K.V.S.K., Saradhi, P.P., 2004. Enhanced tolerance to photoinhibition in transgenic plants through targeting of glycinebetaine biosynthesis into the chloroplasts. Plant Sci., 166(5):1197-1212.

[22]Prasad, K.V.S.K., Sharmila, P., Kumar, P.A., Saradhi, P.P., 2000. Transformation of Brassica juncea (L) Czern with bacterial codA gene enhances its tolerance to salt stress. Mol. Breed., 6(5):489-499.

[23]Rahman, M.S., Miyake, H., Takeoka, Y., 2002. Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Prod. Sci., 5(1):33-44.

[24]Rontein, D., Basset, G., Hanson, A.D., 2002. Metabolic engineering of osmoprotectant accumulation in plants. Met. Eng., 4(1):49-56.

[25]Sakamoto, A., Murata, N., 2000. Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J. Exp. Bot., 51(342):81-88.

[26]Sakamoto, A., Murata, N., 2001. The use of bacterial choline oxidase, a glycinebetaine synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol., 125(1):180-188.

[27]Sakamoto, A., Murata, N., 2002. The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ., 25(2):163-171.

[28]Sakamoto, A., Alia, Murata, N., 1998. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol. Biol., 38(6):1011-1019.

[29]Saneoka, H., Nagasaka, C., Hahn, D.T., Yang, W.J., Premachandra, G.S., Joly, R.J., Rhodes, D., 1995. Salt tolerance of glycinebetaine deficient and containing maize lines. Plant Physiol., 107(2):631-638.

[30]Sawahel, W., 2003. Improved performance of transgenic glycinebetaine-accumulating rice plants under drought stress. Biologia Plantarum, 47(1):39-44.

[31]Schobert, B., 1977. Is there an osmotic regulatory mechanism in algae and higher plants? J. Theor. Biol., 68(1):17-26.

[32]Xu, W., Sun, M.H., Zhu, Y.F., Su, W.A., 2001. Protective effects of glycibetaine on Brassica chinensis under salt stress. Acta Bot. Sin., 43(8):809-814.

[33]Yang, S.Y., 1999. Determination of Chlorophyll Content. In: Tang, Z.C. (Ed.), Modern Experiment Protocol in Plant Physiology. Science Press, Beijing, China, p.95-96 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE