CLC number: TS202.3
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-09-30
Cited: 28
Clicked: 8234
Alejandro Méndez, Catalina Pérez, Julio Cesar Montañéz, Gabriela Martínez, Cristóbal Noé Aguilar. Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature[J]. Journal of Zhejiang University Science B, 2011, 12(12): 961-968.
@article{title="Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature",
author="Alejandro Méndez, Catalina Pérez, Julio Cesar Montañéz, Gabriela Martínez, Cristóbal Noé Aguilar",
journal="Journal of Zhejiang University Science B",
volume="12",
number="12",
pages="961-968",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1100039"
}
%0 Journal Article
%T Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature
%A Alejandro Méndez
%A Catalina Pérez
%A Julio Cesar Montañéz
%A Gabriela Martínez
%A Cristóbal Noé Aguilar
%J Journal of Zhejiang University SCIENCE B
%V 12
%N 12
%P 961-968
%@ 1673-1581
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100039
TY - JOUR
T1 - Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature
A1 - Alejandro Méndez
A1 - Catalina Pérez
A1 - Julio Cesar Montañéz
A1 - Gabriela Martínez
A1 - Cristóbal Noé Aguilar
J0 - Journal of Zhejiang University Science B
VL - 12
IS - 12
SP - 961
EP - 968
%@ 1673-1581
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100039
Abstract: The combined effects of pH and temperature on red pigment production and fungal morphology were evaluated in a submerged culture of Penicillium purpurogenum GH2, using Czapek-Dox media with d-xylose as a carbon source. An experimental design with a factorial fix was used: three pH values (5, 7, and 9) and two temperature levels (24 and 34 °C) were evaluated. The highest production of red pigment (2.46 g/L) was reached with a pH value of 5 and a temperature of 24 °C. Biomass and red pigment production were not directly associated. This study demonstrates that P. purpurogenum GH2 produces a pigment of potential interest to the food industry. It also shows the feasibility of producing and obtaining natural water-soluble pigments for potential use in food industries. A strong combined effect (p<0.05) of pH and temperature was associated with maximal red pigment production (2.46 g/L).
[1]Ahn, J., Jung, J., Hyung, W., Haam, S., Shin, C., 2006. Enhancement of monascus pigment production by the culture of Monascus sp. J101 at low temperature. Biotechnol. Prog., 22(1):338-340.
[2]Babitha, S., Soccol, C.R., Pandey, A., 2007. Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Biores. Technol., 98(8):1554-1560.
[3]Blanc, P.J., Loret, M.O., Santerre, A.L., Pareilleux, A., Prome, D., Prome, J.C., Laussac, J.P., Goma, G., 1994. Pigments of Monascus. J. Food Sci., 59(4):862-865.
[4]Boskou, D., 2008. Properties of Food Colours Obtained by the Physical Extraction, Chemical Synthesis and Biosynthesis by Microorganisms. In: Koutinas, A., Pandey, A., Larroche, C. (Eds.), Current Topics on Bioprocess in Food Industry, Vol. II. Asiatech Publisher Inc., New Delhi, India, p.499-506.
[5]Carvalho, J.C., Pandey, A., Babitha, S., Soccol, C.R., 2003. Production of Monascus biopigments: an overview. Agro Food Ind. Hi-Tech, 14(6):37-42.
[6]Chen, M.H., Johns, M.R., 1993. Effect of pH and nitrogen source on pigment production by Monascus purpureus. Appl. Microbiol. Biotechnol., 40(1):132-138.
[7]Cho, Y.J., Hwang, H.J., Kim, S.W., Song, C.H., Yun, J.W., 2002. Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. J. Biotechnol., 95(1):13-23.
[8]Dufossé, L., 2006. Microbial production of food grade pigments. Food Technol. Biotechnol., 44(3):313-321.
[9]Durán, N., Teixeira, M.F.S., de Conti, R., Esposito, E., 2002. Ecological-friendly pigments from fungi. Crit. Rev. Food Sci. Nut., 42(1):53-66.
[10]Engstrom, G.W., Stenkamp, R.E., McDorman, D.J., Jensen, L.H., 1982. Spectral identification, X-ray structure determination, and iron chelating capability of erythroglaucin, a red pigment from Aspergillus ruber. J. Agric. Food Chem., 30(2):304-307.
[11]Espinoza-Hernández, T.C., Rodriguez-Herrera, R., Aguilar, Contreras-Esquivel, J.C., 2004. Physiological Characterization of Fungal Strains (Pigment Producers). Proceedings of First Congress of Food Science and Food Biotechnology in Developing Countries. Durango, Dgo, Mexico, p.227-231.
[12]Gunasekaran, S., Poorniammal, R., 2008. Optimization of fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. Afr. J. Biotechnol., 7(12):1894-1898.
[13]Hajjaj, H., Blanc, P.J., Groussac, E., Goma, G., Uribelarrea, J.L., Loubiere, P., 1999. Improvement of red pigment/ citrinin production ratio as a function of environmental conditions by Monascus ruber. Biotechnol. Bioeng., 64(4):497-501.
[14]Hernández-Rivera, J.S., Méndez-Zavala, A., Pérez-Berúmen, C., Contreras-Esquivel, J.C., Rodríguez-Herrera, R., Aguilar, C.N., 2008. Culture Conditions to Improve the Red Pigment Production by Penicillium purpurogenum GH2. In: Soto-Cruz, O., Angel, P.M., Gallegos-Infante, A., Rodríguez-Herrera, R. (Eds.), Advance in Food Science and Food Biotechnology in Developing Countries. Mex Asoc Food Sci Editions, Saltillo, Mexico, p.108-112.
[15]Jiang, Y., Li, H.B., Chen, F., Hyde, K.D., 2005. Production potential of water-soluble Monascus red pigment by a newly isolated Penicillium sp. J. Agric. Technol., 1(1):113-126.
[16]Lin, T.F., Demain, A.L., 1991. Effect of nutrition of Monascus sp. on formation of red pigments. Appl. Microbiol. Biotechnol., 36(1):70-75.
[17]Mapari, S.A.S., Meyer, A.S., Thrane, U., 2006. Colorimetric characterization for comparative analysis of fungal pigments and natural food colorants. J. Agric. Food Chem., 54(19):7027-7035.
[18]Mapari, S.A.S., Hansen, M.E., Meyer, A.S., Thrane, U., 2008a. Computerized screening for novel producers of Monascus-like food pigments in Penicillium species. J. Agric. Food Chem., 56(21):9981-9989.
[19]Mapari, S.A.S., Meyer, A.S., Thrane, U., 2008b. Evaluation of Epicoccum nigrum for growth, morphology and production of natural colorants in liquid media and on solid rice medium. Biotechnol. Lett., 30(12):2183-2190.
[20]Méndez-Zavala, A., Contreras-Esquivel, J.C., Lara-Victoriano, F., Rodríguez-Herrera, R., Aguilar, C.N., 2007. Fungal production of a red pigment using a xerophilic strain of Penicillium purpurogenum GH2. Rev. Mex. Ing. Quím., 6:267-273.
[21]Miyake, T., Zhang, M.Y., Kono, I., Nozaki, N., Sammoto, H., 2006. Repression of secondary metabolite production by exogenous cAMP in Monascus. Biosci. Biotechnol. Biochem., 70(6):1521-1523.
[22]Orozco, S.F., Kilikian, B.V., 2008. Effect of pH on citrinin and red pigments production by Monascus purpureus CCT3802. World J. Microbiol. Biotechnol., 24(2):263-268.
[23]Quintero-Ramírez, R., 1981. Kinetics of Microbial Growth. In: Mexicana, A. (Ed.), Biochemical Engineering: Theory and Applications. Editorial Alhambra Mexicana, Mexico, p.32 (in Spanish).
[24]Shin, C.S., Kim, H.J., Kim, M.J., Ju, J.Y., 1998. Morphological change and enhanced pigment production of Monascus when cocultured with Saccharomyces cerevisiae or Aspergillus oryzae. Biotechnol. Bioeng., 59(5):576-581.
[25]Su, Y.C., 1983. Fermentative production of anka-pigments (Monascus pigments). Kor. J. Microbiol. Bioeng., 11:325-329.
[26]Suh, J.H., Shin, C.S., 2000. Physiological analysis on novel coculture of Monascus sp. J101 with Saccharomyces cerevisiae. FEMS Microbiol. Lett., 190(2):241-245.
[27]Suhr, K.I., Haasum, I., Streenstrup, L.D., Larsen, T.O., 2002. Factors affecting growth and pigmentation of Penicillium caseifulvum. J. Dairy Sci., 85(11):2786-2794.
[28]Tseng, Y.Y., Chen, M.T., Lin, C.F., 2000. Growth, pigment production and protease activity of Monascus purpureus as affected by salt, sodium nitrite, polyphosphate and various sugars. J. Appl. Microbiol., 88(1):31-37.
[29]Vázquez-Duhalt, R., 2002. Biological Thermodynamics. AGT Editor, SA, Mexico DF, p.223.
[30]Zhou, J., Liu, L., Shi, Z., Du, G., Chen, J., 2009. ATP in current biotechnology: regulation, applications and perspectives. Biotechnol. Adv., 27(1):94-101.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
Cristobal Aguilar@University of Coahuila<cristobal.aguilar@uadec.edu.mx>
2012-05-31 00:12:08
I will be contacting you by email
padmapriya@research scholar<agri.padma@gmail.com>
2012-05-29 00:23:36
I;m padmapriya doing research on production of microbial pigment. So i need this article for my research work. Kindly send as early as possible.