Full Text:   <3621>

Suppl. Mater.: 

CLC number: S641.2; Q78

On-line Access: 2012-04-06

Received: 2011-03-01

Revision Accepted: 2011-08-29

Crosschecked: 2012-03-14

Cited: 13

Clicked: 6217

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2012 Vol.13 No.4 P.283-297


Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit

Author(s):  Lin Cheng, Rong-rong Sun, Fei-yan Wang, Zhen Peng, Fu-ling Kong, Jian Wu, Jia-shu Cao, Gang Lu

Affiliation(s):  Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310029, China

Corresponding email(s):   glu@zju.edu.cn

Key Words:  Solanum lycopersicum L., Spermidine, High temperature, Microarray, Gene expression The online version of this article contains supplementary materials

Lin Cheng, Rong-rong Sun, Fei-yan Wang, Zhen Peng, Fu-ling Kong, Jian Wu, Jia-shu Cao, Gang Lu. Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit[J]. Journal of Zhejiang University Science B, 2012, 13(4): 283-297.

@article{title="Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit",
author="Lin Cheng, Rong-rong Sun, Fei-yan Wang, Zhen Peng, Fu-ling Kong, Jian Wu, Jia-shu Cao, Gang Lu",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit
%A Lin Cheng
%A Rong-rong Sun
%A Fei-yan Wang
%A Zhen Peng
%A Fu-ling Kong
%A Jian Wu
%A Jia-shu Cao
%A Gang Lu
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 4
%P 283-297
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100060

T1 - Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit
A1 - Lin Cheng
A1 - Rong-rong Sun
A1 - Fei-yan Wang
A1 - Zhen Peng
A1 - Fu-ling Kong
A1 - Jian Wu
A1 - Jia-shu Cao
A1 - Gang Lu
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 4
SP - 283
EP - 297
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100060

Objective: high temperature adversely affects quality and yield of tomato fruit. Polyamine can alleviate heat injury in plants. This study is aimed to investigate the effects of polyamine and high temperature on transcriptional profiles in ripening tomato fruit. Methods: An Affymetrix tomato microarray was used to evaluate changes in gene expression in response to exogenous spermidine (Spd, 1 mmol/L) and high temperature (33/27 °C) treatments in tomato fruits at mature green stage. Results: Of the 10101 tomato probe sets represented on the array, 127 loci were differentially expressed in high temperature-treated fruits, compared with those under normal conditions, functionally characterized by their involvement in signal transduction, defense responses, oxidation reduction, and hormone responses. However, only 34 genes were up-regulated in Spd-treated fruits as compared with non-treated fruits, which were involved in primary metabolism, signal transduction, hormone responses, transcription factors, and stress responses. Meanwhile, 55 genes involved in energy metabolism, cell wall metabolism, and photosynthesis were down-regulated in Spd-treated fruits. Conclusions: Our results demonstrated that Spd might play an important role in regulation of tomato fruit response to high temperature during ripening stage.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Apelbaum, A., Burgoon, A.C., Anderson, J.D., Lieberman, M., 1981. Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts. Plant Physiol., 68(2):453-456.

[2]Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B, 57(1):289-300.

[3]Bohnert, H.J., Gong, Q.Q., Li, P.H., Ma, S.S., 2006. Unraveling abiotic stress tolerance mechanisms—getting genomics going. Curr. Opin. Plant Biol., 9(2):180-188.

[4]Cheng, L., Zou, Y.J., Ding, S.L., Zhang, J.J., Yu, X.L., Cao, J.S., Lu, G., 2009. Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J. Integr. Plant Biol., 51(5):489-499.

[5]Cona, A., Rea, G., Angelini, R., Federico, R., Tavladoraki, P., 2006. Functions of amine oxidases in plant development and defence. Trends Plant Sci., 11(2):80-88.

[6]Couée, I., Hummel, I., Sulmon, C., Gouesbet, G., El Amrani, A., 2004. Involvement of polyamines in root development. Plant Cell Tiss. Org. Cult., 76(1):1-10.

[7]Escribano, M.I., Merodio, C., 1994. The relevance of polyamine levels in cherimoya (Annona cherimola Mill.) fruit ripening. J. Plant Physiol., 143(2):207-212.

[8]Fei, Z.J., Tang, X.M., Alba, R., Giovannoni, J., 2006. Tomato Expression Database (TED): a suite of data presentation and analysis tools. Nucl. Acids Res., 34(90001):D766-D770.

[9]Groppa, M.D., Benavides, M.P., 2008. Polyamines and abiotic stress: recent advances. Amino Acids, 34(1):35-45.

[10]Groppa, M.D., Tomaro, M.L., Benavides, M.P., 2001. Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci., 161(3):481-488.

[11]Iba, K., 2002. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol., 53(1):225-245.

[12]Inaba, M., Crandall, P.G., 1988. Electrolyte leakage as an indicator of high-temperature injury to harvested mature green tomatoes. J. Am. Soc. Hort. Sci., 113(1):96-99.

[13]Kakkar, R.K., Sawhney, V.K., 2002. Polyamine research in plants—a changing perspective. Physiol. Plant., 116(3):281-292.

[14]Kasukabe, Y., He, L.X., Nada, K., Misawa, S., Ihara, I., Tachibana, S., 2004. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol., 45(6):712-722.

[15]Kaur, N., Gupta, A.K., 2005. Signal transduction pathways under abiotic stresses in plants. Curr. Sci. India, 88(11):1771-1780.

[16]Königshofer, H., Lechner, S., 2002. Are polyamines involved in the synthesis of heat-shock proteins in cell suspension cultures of tobacco and alfalfa in response to high-temperature stress? Plant Physiol. Biochem., 40(1):51-59.

[17]Kotak, S., Larkindale, J., Lee, U., von Koskull-Doring, P., Vierling, E., Scharf, K.D., 2007. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol., 10(3):310-316.

[18]Lang, Q.L., Zhou, X.C., Zhang, X.L., Drabek, R., Zou, Z.X., Ren, Y.L., Li, T.B., Chen, J.S., Gao, X.L., 2011. Microarray-based identification of tomato microRNAs and time course analysis of their response to Cucumber mosaic virus infection. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 12(2):116-125.

[19]Law, D.M., Davies, P.J., Mutschler, M.A., 1991. Polyamine-induced prolongation of storage in tomato fruits. Plant Growth Regul., 10(4):283-290.

[20]Li, S.J., Fu, Q.T., Huang, W.D., Yu, D.Q., 2009. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep., 28(4):683-693.

[21]Liu, K., Fu, H.H., Bei, Q.X., Luan, S., 2000. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol., 124(3):1315-1325.

[22]Ludwig, A.A., Saitoh, H., Felix, G., Freymark, G., Miersch, O., Wasternack, C., Boller, T., Jones, J.D.G., Romeis, T., 2005. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. PNAS, 102(30):10736-10741.

[23]Lurie, S., Handros, A., Fallik, E., Shapira, R., 1996. Reversible inhibition of tomato fruit gene expression at high temperature—effects on tomato fruit ripening. Plant Physiol., 110(4):1207-1214.

[24]Ma, S.S., Gong, Q.Q., Bohnert, H.J., 2006. Dissecting salt stress pathways. J. Exp. Bot., 57(5):1097-1107.

[25]Mariani, P., Dorazi, D., Bagni, N., 1989. Polyamines in primary walls of carrot cells: endogenous content and interactions. J. Plant Physiol., 135(4):508-510.

[26]Mattoo, A., Cassol, T., Mehta, R., Handa, A., Ali, N., Abdul-Baki, A., 2002. Genetic engineering of tomato fruit for sustained accumulation of polyamines during ripening to study their physiological role(s). Acta Hort. (ISHS), 575(1-2):157-161.

[27]Momcilovic, I., Ristic, Z., 2007. Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. J. Plant Physiol., 164(1):90-99.

[28]Mueller, L.A., Solow, T.H., Taylor, N., Skwarecki, B., Buels, R., Binns, J., Lin, C.W., Wright, M.H., Ahrens, R., Wang, Y., 2005. The SOL Genomics Network. A comparative resource for Solanaceae biology and beyond. Plant Physiol., 138(3):1310-1317.

[29]Nag, S., Saha, K., Choudhuri, M.A., 2001. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J. Plant Growth Regul., 20(2):182-194.

[30]Nayyar, H., Chander, S., 2004. Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J. Agron. Crop Sci., 190(5):355-365.

[31]Ouyang, B., Yang, T., Li, H.X., Zhang, L., Zhang, Y.Y., Zhang, J.H., Fei, Z.J., Ye, Z.B., 2007. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J. Exp. Bot., 58(3):507-520.

[32]Pal Bais, H., Ravishankar, G.A., 2002. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tiss. Org. Cult., 69(1):1-34.

[33]Paschalidis, K.A., Roubelakis-Angelakis, K.A., 2005. Sites and regulation of polyamine catabolism in the tobacco plant. Correlations with cell division/expansion, cell cycle progression, and vascular development. Plant Physiol., 138(4):2174-2184.

[34]Paull, R.E., Chen, N.J., 2000. Heat treatment and fruit ripening. Postharvest Biol. Technol., 21(1):21-37.

[35]Perez-Amador, M.A., Leon, J., Green, P.J., Carbonell, J., 2002. Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in arabidopsis. Plant Physiol., 130(3):1454-1463.

[36]Pérez-Vicente, A., Martínez-Romero, D., Carbonell, Á., Serrano, M., Riquelme, F., Guillén, F., Valero, D., 2002. Role of polyamines in extending shelf life and the reduction of mechanical damage during plum (Prunus salicina Lindl.) storage. Postharvest Biol. Technol., 25(1):25-32.

[37]Picton, S., Grierson, D., 1988. Inhibition of expression of tomato-ripening genes at high-temperature. Plant Cell Environ., 11(4):265-272.

[38]Pressman, E., Peet, M.M., Pharr, D.M., 2002. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann. Bot., 90(5):631-636.

[39]Ramakers, C., Ruijter, J.M., Deprez, R.H., Moorman, A.F., 2003. Assumption-free analysisi of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett., 339(1):62-66.

[40]Rastogi, R., Davies, P.J., 1991. Polyamine metabolism in ripening tomato fruit: 2. polyamine metabolism and synthesis in relation to enhanced putrescine content and storage life of alc tomato fruit. Plant Physiol., 95(1):41-45.

[41]Renaut, J., Hoffmann, L., Hausman, J.F., 2005. Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets. Physiol. Plant., 125(1):82-94.

[42]Roy, M., Wu, R., 2001. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci., 160(5):869-875.

[43]Sato, S., Peet, M.M., Gardner, R.G., 2001. Formation of parthenocarpic fruit, undeveloped flowers and aborted flowers in tomato under moderately elevated temperatures. Sci. Hort., 90(3-4):243-254.

[44]Selth, L.A., Dogra, S.C., Rasheed, M.S., Healy, H., Randles, J.W., Rezaian, M.A., 2005. A NAC domain protein interacts with tomato leaf cuil virus replication accessory protein and enhances viral replication. Plant Cell, 17(1):311-325.

[45]Sun, C.W., Callis, J., 1997. Independent modulation of Arabidopsis thaliana polyubiquitin mRNAs in different organs of and in response to environmental changes. Plant J., 11(5):1017-1027.

[46]Thu-Hang, P., Bassie, L., Safwat, G., Trung-Nghia, P., Christou, P., Capell, T., 2002. Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-l-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine. Plant Physiol., 129(4):1744-1754.

[47]Todorova, D., Sergiev, I., Alexieva, V., Karanov, E., Smith, A., Hall, M., 2007. Polyamine content in Arabidopsis thaliana (L.) Heynh during recovery after low and high temperature treatments. Plant Growth Regul., 51(3):185-191.

[48]Torrigiani, P., Bregoli, A.M., Ziosi, V., Scaramagli, S., Ciriaci, T., Rasori, A., Biondi, S., Costa, G., 2004. Pre-harvest polyamine and aminoethoxyvinylglycine (AVG) applications modulate fruit ripening in Stark Red Gold nectarines (Prunus persica L. Batsch). Postharvest Biol. Technol., 33(3):293-308.

[49]Valero, D., Perez-Vicente, A., Martinez-Romero, D., Castillo, S., Guillen, G., Serrano, M., 2002. Plum storability improved after calcium and heat postharvest treatments: role of polyamines. J. Food Sci., 67(7):2571-2575.

[50]Vannini, C., Iriti, M., Bracale, M., Locatelli, F., Faoro, F., Croce, P., Pirona, R., Di Maro, A., Coraggio, I., Genga, A., 2006. The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. Physiol. Mol. Plant Pathol., 69(1-3):26-42.

[51]Verma, S., Mishra, S.N., 2005. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J. Plant Physiol., 162(6):669-677.

[52]Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R., 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot., 61(3):199-223.

[53]Walden, R., Cordeiro, A., Tiburcio, A.F., 1997. Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol., 113(4):1009-1013.

[54]Wang, C.Y., Conway, W.S., Abbott, J.A., Kramer, G.F., Sams, C.E., 1993. Postharvest infiltration of polyamines and calcium influences ethylene production and texture changes in ‘Golden Delicious’ apples. J. Am. Soc. Hort. Sci., 118(6):801-806.

[55]Wang, W.X., Vinocur, B., Shoseyov, O., Altman, A., 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci., 9(5):244-252.

[56]Yakir, D., Sadovski, A., Rabinowitch, H.D., Rudich, J., 1984. Effect of high-temperature on quality of processing-tomatoes of various genotypes ripened off the vine. Sci. Hort., 23(4):323-330.

[57]Yamamoto, A., Bhuiyan, N.H., Waditee, R., Tanaka, Y., Esaka, M., Oba, K., Jagendorf, A.T., Takabe, T., 2005. Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J. Exp. Bot., 56(417):1785-1796.

[58]Zhang, H., Ma, X.Y., Qian, Y.J., Zhou, X.Y., 2010. Molecular characterization and infectivity of Papaya leaf curl China virus infecting tomato in China. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 11(2):109-114.

[59]Zhang, H.W., Huang, Z.J., Xie, B.Y., Chen, Q., Tian, X., Zhang, X.L., Zhang, H.B., Lu, X.Y., Huang, D.F., Huang, R.F., 2004. The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta, 220(2):262-270.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE