Full Text:   <3617>

Summary:  <1936>

CLC number: Q819

On-line Access: 2014-04-06

Received: 2013-05-24

Revision Accepted: 2013-11-18

Crosschecked: 2014-03-18

Cited: 5

Clicked: 7422

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.4 P.333-342

http://doi.org/10.1631/jzus.B1300149


Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus *


Author(s):  Ming-ming Chen1, Ai-li Li1, Mao-cheng Sun2, Zhen Feng1, Xiang-chen Meng1, Ying Wang1

Affiliation(s):  1. MOE Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; more

Corresponding email(s):   aili-mail@163.com

Key Words:  Metabolomics, Quenching method, Lactobacillus bulgaricus , Leakage


Ming-ming Chen, Ai-li Li, Mao-cheng Sun, Zhen Feng, Xiang-chen Meng, Ying Wang. Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus[J]. Journal of Zhejiang University Science B, 2014, 15(4): 333-342.

@article{title="Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus",
author="Ming-ming Chen, Ai-li Li, Mao-cheng Sun, Zhen Feng, Xiang-chen Meng, Ying Wang",
journal="Journal of Zhejiang University Science B",
volume="15",
number="4",
pages="333-342",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1300149"
}

%0 Journal Article
%T Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus
%A Ming-ming Chen
%A Ai-li Li
%A Mao-cheng Sun
%A Zhen Feng
%A Xiang-chen Meng
%A Ying Wang
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 4
%P 333-342
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300149

TY - JOUR
T1 - Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus
A1 - Ming-ming Chen
A1 - Ai-li Li
A1 - Mao-cheng Sun
A1 - Zhen Feng
A1 - Xiang-chen Meng
A1 - Ying Wang
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 4
SP - 333
EP - 342
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300149


Abstract: 
This study proposed a quenching protocol for metabolite analysis of Lactobacillus delbrueckii subsp. bulgaricus. Microbial cells were quenched with 60% methanol/water, 80% methanol/glycerol, or 80% methanol/water. The effect of the quenching process was assessed by the optical density (OD)-based method, flow cytometry, and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed for metabolite identification. The results indicated that quenching with 80% methanol/water solution led to less damage to the L. bulgaricus cells, characterized by the lower relative fraction of prodium iodide (PI)-labeled cells and the higher OD recovery ratio. Through GC-MS analysis, higher levels of intracellular metabolites (including focal glutamic acid, aspartic acid, alanine, and AMP) and a lower leakage rate were detected in the sample quenched with 80% methanol/water compared with the others. In conclusion, we suggested a higher concentration of cold methanol quenching for L. bulgaricus metabolomics due to its decreasing metabolite leakage.

保加利亚乳杆菌代谢组学中淬灭方法的优化研究

研究目的:为保加利亚乳杆菌的代谢组学研究提供一种简单有效的淬灭方案。
创新要点:采用适当的淬灭技术是获得微生物真实代谢物组数据的必要条件。本研究首次建立了适用于保加利亚乳杆菌代谢组学研究的淬灭方法,有助于完善乳酸菌代谢的生理学和遗传学概貌。
研究方法:分别应用−40 °C的60%甲醇/水、80%甲醇/水和80%甲醇/甘油三种方式淬灭保加利亚乳杆菌。利用光密度(OD)回收率实验、流式细胞术和气质联用(GC-MS)分析菌体细胞完整性和细胞内外代谢物,以及主成分分析法(PCA)和正交偏最小二乘法-判别分析法(OPLS-DA)分析代谢物泄露程度。
重要结论:80%冷甲醇/水更适用于淬灭保加利亚乳杆菌,能有效减少代谢物泄露程度和增加胞内代谢物水平。
代谢组学;淬灭处理;保加利亚乳杆菌;泄露

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Bolten, C.J., Kiefer, P., Letisse, F., 2007. Sampling for metabolome analysis of microorganisms. Anal Chem, 79(10):3843-3849. 


[2] Canelas, A.B., Ras, C., ten Pierick, A., 2008. Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics, 4(3):226-239. 


[3] Carvalho, A.S., Silva, J., Ho, P., 2004. Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int Dairy J, 14(10):835-847. 


[4] Castrillo, J.I., Hayes, A., Mohmmed, S., 2003. An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry, 62(6):929-937. 


[5] Coulier, L., Bas, R., Jespersen, S., 2006. Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry. Anal Biochem, 78(18):6573-6582. 


[6] Daz, M., Herrero, M., Garca, L.A., 2010. Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J, 48(3):385-407. 


[7] Duetz, W.A., Witholt, B., 2004. Oxygen transfer by orbital shaking of square vessels and deep well microtiter plates of various dimensions. Biochem Eng J, 17(3):181-185. 


[8] Faijes, M., Mars, A.E., Smid, E.J., 2007. Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarumMicrob Cell Fact, 6:27


[9] Fonseca, F., Marin, M., Morris, G.J., 2006. Stabilization of frozen Lactobacillus delbrueckii subsp. bulgaricus in glycerol suspensions: freezing kinetics and storage temperature effects. Appl Environ Microbiol, 72(10):6474-6482. 


[10] Garbayo, I., Vlchez, C., Vega, J.M., 2004. Influence of immobilization parameters on growth and lactic acid production by Streptococcus thermophilus and Lactobacillus bulgaricus co-immobilized in calcium alginate gel beads. Biotechnol Lett, 26(23):1825-1827. 


[11] Huang, L., Lu, Z., Yuan, Y., 2006. Optimization of a protective medium for enhancing the viability of freeze-dried Lactobacillus delbrueckii subsp. bulgaricus based on response surface methodology. J Ind Microbiol Biotechnol, 33(1):55-61. 


[12] Jana, S., Lorenz, C.R., Patricia, W., 2009. A method for enzyme quenching in microbial metabolome analysis successfully applied to Gram-positive and Gram-negative bacteria and yeast. Anal Biochem, 394(2):192-201. 


[13] Koek, M.M., Muilwijk, B., van der Werf, M.J., 2006. Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem, 78(4):1272-1281. 


[14] Kumar, S., Wittmann, C., Heinzle, E., 2004. Minibioreactors. Biotechnol Lett, 26(1):1-10. 


[15] Lange, H.C., Eman, M., van Zuijlen, G., 2001. Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiaeBiotechnol Bioeng, 75(4):406-415. 


[16] Li, C., Zhao, J.L., Wang, Y.T., 2009. Synthesis of cyclopropane fatty acid and its effect on freeze-drying survival of Lactobacillus bulgaricus L2 at different growth conditions. World J Microbiol Biotechnol, 25(9):1659-1665. 


[17] Link, H., Anselment, B., Weuster-Botz, D., 2008. Leakage of adenylates during cold methanol/glycerol quenching of Escherichia coliMetabolomics, 4(3):240-247. 


[18] Meyer, H., Liebeke, M., Lalk, M., 2010. A protocol for the investigation of the intracellular Staphylococcus aureus metabolome. Anal Biochem, 401(2):250-259. 


[19] Nielsen, J., 1997. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates. Biochem J, 321:133-138. 


[20] Oldiges, M., Ltz, S., Pflug, S., 2007. Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biotechnol, 76(3):495-511. 


[21] Otto, R., Brink, B., Veldkamp, H., 1983. The relation between growth rate and electrochemical proton gradient of Streptococcus cremorisFEMS Microbiol Lett, 16(1):69-74. 


[22] Russell, J.B., Diez-Gonzalez, F., 1998. The effects of fermentation acids on bacterial growth. Adv Microb Physiol, 39:205-234. 


[23] Schdel, F., David, F., Franco-Lara, E., 2011. Evaluation of cell damage caused by cold sampling and quenching for metabolome analysis. Appl Microbiol Biotechnol, 92(6):1261-1274. 


[24] Schaefer, U., Boos, W., Takors, R., 1999. Automated sampling device for monitoring intracellular metabolites dynamics. Anal Biochem, 270(1):88-96. 


[25] Schiraldi, C., Valli, C., Molinaro, A., 2006. Exopolysaccharides production in Lactobacillus bulgaricus and Lactobacillus casei exploiting microfiltration. J Ind Microbiol Biotechnol, 33(5):384-390. 


[26] Siegumfeldt, H., Rechinger, K.B., Jakobsen, M., 2000. Dynamic changes of intracellular pH in individual lactic acid bacteria cells in response to a rapid drop in extracellular pH. Appl Environ Microbiol, 66(6):2330-2335. 


[27] Spura, J., Reimer, L.C., Wieloch, P., 2009. A method for enzyme quenching in microbial metabolome analysis successfully applied to Gram-positive and Gram-negative bacteria and yeast. Anal Biochem, 394(2):192-201. 


[28] Tang, Y.J., Martin, H.G., Myers, S., 2009. Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling. Mass Spectrom Rev, 28(2):362-375. 


[29] van Dam, J.C., Eman, M.R., Frank, J., 2002. Analysis of glycolytic intermediates in Saccharomyces cerevisiae using anion exchange chromatography and electrospray ionisation with tandem mass spectrometric detection. Anal Chim Acta, 460(2):209-218. 


[30] Villas-Bôas, S.G., Bruheim, P., 2007. Cold glycerol-saline: the promising quenching solution for accurate intracellular metabolite analysis of microbial cells. Anal Biochem, 370(1):87-97. 


[31] Wittmann, C., Krmer, J.O., Kiefer, P., 2004. Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Anal Biochem, 327(1):135-139. 


[32] Wu, H., Southam, A.D., Hines, A., 2008. High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal Biochem, 372(2):204-212. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE