Full Text:   <434>

Summary:  <99>

CLC number: 

On-line Access: 2023-06-13

Received: 2022-11-28

Revision Accepted: 2023-04-06

Crosschecked: 2023-09-13

Cited: 0

Clicked: 551

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Huiyong ZHU

https://orcid.org/0000-0003-0883-5355

Yuwei DAI

https://orcid.org/0000-0001-5715-1975

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2023 Vol.24 No.9 P.796-806

http://doi.org/10.1631/jzus.B2200602


OCT4’s role and mechanism underlying oral squamous cell carcinoma


Author(s):  Yuwei DAI, Ziqiong WU, Yitong CHEN, Xinjian YE, Chaowei WANG, Huiyong ZHU

Affiliation(s):  Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; more

Corresponding email(s):   zhuhuiyong@zju.edu.cn

Key Words:  Cancer stem cell (CSC), Octamer-binding transcription factor 4 (OCT4), Oral squamous cell carcinoma (OSCC), Prognosis, Signaling pathway


Yuwei DAI, Ziqiong WU, Yitong CHEN, Xinjian YE, Chaowei WANG, Huiyong ZHU. OCT4’s role and mechanism underlying oral squamous cell carcinoma[J]. Journal of Zhejiang University Science B, 2023, 24(9): 796-806.

@article{title="OCT4’s role and mechanism underlying oral squamous cell carcinoma",
author="Yuwei DAI, Ziqiong WU, Yitong CHEN, Xinjian YE, Chaowei WANG, Huiyong ZHU",
journal="Journal of Zhejiang University Science B",
volume="24",
number="9",
pages="796-806",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2200602"
}

%0 Journal Article
%T OCT4’s role and mechanism underlying oral squamous cell carcinoma
%A Yuwei DAI
%A Ziqiong WU
%A Yitong CHEN
%A Xinjian YE
%A Chaowei WANG
%A Huiyong ZHU
%J Journal of Zhejiang University SCIENCE B
%V 24
%N 9
%P 796-806
%@ 1673-1581
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2200602

TY - JOUR
T1 - OCT4’s role and mechanism underlying oral squamous cell carcinoma
A1 - Yuwei DAI
A1 - Ziqiong WU
A1 - Yitong CHEN
A1 - Xinjian YE
A1 - Chaowei WANG
A1 - Huiyong ZHU
J0 - Journal of Zhejiang University Science B
VL - 24
IS - 9
SP - 796
EP - 806
%@ 1673-1581
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2200602


Abstract: 
oral squamous cell carcinoma (OSCC), a common malignancy of the head and neck, ranks sixth worldwide in terms of cancers with the most negative impact, owing to tumor relapse rates, cervical lymphnode metastasis, and the lack of an efficacious systemic therapy. Its prognosis is poor, and its mortality rate is high. octamer-binding transcription factor 4 (OCT4) is a member of the Pit-Oct-Unc (POU) family and is a key reprogramming factor that produces a marked effect in preserving the pluripotency and self-renewal state of embryonic stem cells (ESCs). According to recent studies, OCT4 participates in retaining the survival of OSCC cancer stem cells (CSCs), which has far-reaching implications for the occurrence, recurrence, metastasis, and prognosis of oral carcinogenesis. Therefore, we summarize the structure, subtypes, and function of OCT4 as well as its role in the occurrence, progression, and prognosis of OSCC.

OCT4在口腔鳞状细胞癌发病机制中的作用

戴雨薇1,2,吴紫琼3,陈怡彤3,叶鑫健4,王超炜1,朱慧勇1
1浙江大学医学院第一附属医院口腔颌面外科,中国杭州市,310003
2浙江大学医学院,中国杭州市,310058
3浙江中医药大学口腔医学院,中国杭州市,310053
4浙江大学医学院附属口腔医院,浙江大学口腔医学院,浙江省口腔疾病临床医学研究中心,浙江省口腔生物医学研究重点实验室,浙江大学癌症研究院,中国杭州市,310006
摘要:口腔鳞状细胞癌(OSCC)是一种常见的头颈部恶性肿瘤。由于肿瘤复发率高、颈部淋巴结转移和缺乏有效的全身治疗手段,OSCC在全球最具负面影响的癌症中排名第六。其预后差,死亡率高。八聚体结合转录因子4(OCT4)是Pit-Oct-Unc(POU)家族的成员,是一种关键的重编程因子,在保持胚胎干细胞(ESCs)的多能性和自我更新状态方面具有显著作用。最近的研究表明,OCT4参与维持OSCC癌症干细胞(CSC)的存活,对口腔癌的发生、复发、转移和预后具有深远的影响。因此,我们总结了OCT4的结构、亚型、功能及其在OSCC的发生、发展和预后中的作用。

关键词:癌症干细胞(CSC);八聚体结合转录因子4(OCT4);口腔鳞状细胞癌(OSCC);预后;信号通路

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Al-MagsoosiMJN, LambertDW, Ali KhurramS, et al., 2021. Oral cancer stem cells drive tumourigenesis through activation of stromal fibroblasts. Oral Dis, 27(6):1383-1393.

[2]BaiXP, NiJ, BeretovJ, et al., 2018. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev, 69:‍152-163.

[3]BaillieR, TanST, ItinteangT, 2017. Cancer stem cells in oral cavity squamous cell carcinoma: a review. Front Oncol, 7:112.

[4]BasatiG, MohammadpourH, Emami RazaviA, 2020. Association of high expression levels of SOX2, NANOG, and OCT4 in gastric cancer tumor tissues with progression and poor prognosis. J Gastrointest Cancer, 51(1):41-47.

[5]BensonRA, LowreyJA, LambJR, et al., 2004. The Notch and Sonic hedgehog signalling pathways in immunity. Mol Immunol, 41(6-7):715-725.

[6]BhardwajG, MurdochB, WuD, et al., 2001. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol, 2(2):172-180.

[7]BourguignonLYW, WongG, EarleC, et al., 2012. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem, 287(39):32800-32824.

[8]BrayF, FerlayJ, SoerjomataramI, et al., 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6):394-424.

[9]CaiJH, HeBX, LiXM, et al., 2016. Regulation of tumorigenesis in oral epithelial cells by defined reprogramming factors Oct4 and Sox2. Oncol Rep, 36(2):651-658.

[10]CaoYW, TianWT, CaoL, et al., 2022. Generation of an induced pluripotent stem cell JTUi005-A from a patient with neuronal intranuclear inclusion disease. Stem Cell Res, 65:102938.

[11]CauffmanG, LiebaersI, van SteirteghemA, et al., 2006. POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos. Stem Cells, 24(12):2685-2691.

[12]ChangCC, ShiehGS, WuP, et al., 2008. Oct-3/4 expression reflects tumor progression and regulates motility of bladder cancer cells. Cancer Res, 68(15):6281-6291.

[13]ChenBR, ZhuZP, LiLL, et al., 2019. Effect of overexpression of Oct4 and Sox2 genes on the biological and oncological characteristics of gastric cancer cells. Onco Targets Ther, 12:4667-4682.

[14]ChenTM, HuangCM, HsiehMS, et al., 2022. TRPM7 via calcineurin/NFAT pathway mediates metastasis and chemotherapeutic resistance in head and neck squamous cell carcinoma. Aging, 14(12):5250-5270.

[15]ChienCS, WangML, ChuPY, et al., 2015. Lin28B/Let-7 regulates expression of Oct4 and Sox2 and reprograms oral squamous cell carcinoma cells to a stem-like state. Cancer Res, 75(12):2553-2565.

[16]ChiouSH, YuCC, HuangCY, et al., 2008. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res, 14(13):4085-4095.

[17]CurtarelliRB, GonçalvesJM, dos SantosLGP, et al., 2018. Expression of cancer stem cell biomarkers in human head and neck carcinomas: a systematic review. Stem Cell Rev Rep, 14(6):769-784.

[18]da SilvaSD, HierM, MlynarekA, et al., 2012. Recurrent oral cancer: current and emerging therapeutic approaches. Front Pharmacol, 3:149.

[19]DaiXM, GuoYX, HuY, et al., 2021. Immunotherapy for targeting cancer stem cells in hepatocellular carcinoma. Theranostics, 11(7):3489-3501.

[20]DengKY, LiuL, TanXM, et al., 2020. Wip1 promotes cancer stem cell properties by inhibiting p38 MAPK in NSCLC. Signal Transduct Target Ther, 5:36.

[21]DiévartA, BeaulieuN, JolicoeurP, 1999. Involvement of Notch1 in the development of mouse mammary tumors. Oncogene, 18(44):5973-5981.

[22]FanZN, LiMX, ChenXB, et al., 2017. Prognostic value of cancer stem cell markers in head and neck squamous cell carcinoma: a meta-analysis. Sci Rep, 7:43008.

[23]FengJ, LiYX, WenN, 2021. Characterization of cancer stem cell characteristics and development of a prognostic stemness index cell-related signature in oral squamous cell carcinoma. Dis Markers, 2021:1571421.

[24]FuTY, HsiehIC, ChengJT, et al., 2016. Association of OCT4, SOX2, and NANOG expression with oral squamous cell carcinoma progression. J Oral Pathol Med, 45(2):89-95.

[25]FujiiM, KataseN, LefeuvreM, et al., 2011. Dickkopf (Dkk)-3 and β‍-catenin expressions increased in the transition from normal oral mucosal to oral squamous cell carcinoma. J Mol Histol, 42(6):499-504.

[26]GatU, DasguptaR, DegensteinL, et al., 1998. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β‍-catenin in skin. Cell, 95(5):‍605-614.

[27]GhaziN, AaliN, ShahrokhiVR, et al., 2020. Relative expression of SOX2 and OCT4 in oral squamous cell carcinoma and oral epithelial dysplasia. Rep Biochem Mol Biol, 9(2):171-179.

[28]GimpleRC, BhargavaS, DixitD, et al., 2019. Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes Dev, 33(11-12):591-609.

[29]GliagiasV, WotmanM, HermanSW, et al., 2019. Investigating the role of octamer binding transcription factor-4 (Oct-4) in oral cavity squamous cell carcinoma: a systematic review and meta-analysis. Am J Otolaryngol, 40(2):‍282-288.

[30]GriffinJD, LowenbergB, 1986. Clonogenic cells in acute myeloblastic leukemia. Blood, 68(6):1185-1195.

[31]GuptaS, KumarP, DasBC, 2021. HPV+ve/-ve oral-tongue cancer stem cells: a potential target for relapse-free therapy. Transl Oncol, 14(1):100919.

[32]HanD, WuGM, ChenR, et al., 2022. A balanced Oct4 interactome is crucial for maintaining pluripotency. Sci Adv, 8(7):eabe4375.

[33]HeSQ, ZhangW, LiX, et al., 2021. Oral squamous cell carcin

[34]oma (OSCC)‍-derived exosomal MiR-221 targets and regulates phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) to promote human umbilical vein endothelial cells migration and tube formation. Bioengineered, 12(1):2164-2174.

[35]HengWS, GosensR, KruytFAE, 2019. Lung cancer stem cells: origin, features, maintenance mechanisms and therapeutic targeting. Biochem Pharmacol, 160:121-133.

[36]HerrW, ClearyMA, 1995. The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev, 9(14):1679-1693.

[37]HuangCF, XuXR, WuTF, et al., 2014. Correlation of ALDH1, CD44, OCT4 and SOX2 in tongue squamous cell carcinoma and their association with disease progression and prognosis. J Oral Pathol Med, 43(7):492-498.

[38]HuangGZ, WuQQ, ZhengZN, et al., 2020. M6A-related bioinformatics analysis reveals that HNRNPC facilitates progression of OSCC via EMT. Aging, 12(12):11667-11684.

[39]IliaK, ShakibaN, BinghamT, et al., 2023. Synthetic genetic circuits to uncover and enforce the OCT4 trajectories of successful reprogramming of human fibroblasts. bioRxiv, preprint.

[40]IwaiS, YonekawaA, HaradaC, et al., 2010. Involvement of the Wnt-‍β‍-catenin pathway in invasion and migration of oral squamous carcinoma cells. Int J Oncol, 37(5):‍1095-1103.

[41]KaranuFN, MurdochB, GallacherL, et al., 2000. The Notch ligand Jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med, 192(9):1365-1372.

[42]KarhadkarSS, BovaGS, AbdallahN, et al., 2004. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature, 431(7009):707-712.

[43]KhanW, AugustineD, RaoRS, et al., 2018. Stem cell markers SOX-2 and OCT-4 enable to resolve the diagnostic dilemma between ameloblastic carcinoma and aggressive solid multicystic ameloblastoma. Adv Biomed Res, 7:149.

[44]KimRJ, NamJS, 2011. OCT4 expression enhances features of cancer stem cells in a mouse model of breast cancer. Lab Anim Res, 27(2):147-152.

[45]KongQY, LiuL, HuangYJ, et al., 2014. The effect of octamer-binding transcription factor 4B1 on microRNA signals in human dental pulp cells with inflammatory response. J Endod, 40(1):101-108.

[46]KotoulaV, PapamichosSI, LambropoulosAF, 2008. Revisiting OCT4 expression in peripheral blood mononuclear cells. Stem Cells, 26(1):290-291.

[47]LathiaJD, MackSC, Mulkearns-HubertEE, et al., 2015. Cancer stem cells in glioblastoma. Genes Dev, 29(12):1203-1217.

[48]LeeJ, KimHK, RhoJY, et al., 2006. The human OCT-4 isoforms differ in their ability to confer self-renewal. J Biol Chem, 281(44):33554-33565.

[49]LeeSH, KieuC, MartinCE, et al., 2019. NFATc3 plays an oncogenic role in oral/oropharyngeal squamous cell carcinomas by promoting cancer stemness via expression of OCT4. Oncotarget, 10(23):2306-2319.

[50]LiH, WangLW, ShiSP, et al., 2019. The prognostic and clinicopathologic characteristics of OCT4 and lung cancer: a meta-analysis. Curr Mol Med, 19(1):54-75.

[51]LiuL, HuangR, YangRQ, et al., 2017. OCT4B1 regulates the cellular stress response of human dental pulp cells with inflammation. Biomed Res Int, 2017:2756891.

[52]LiuLK, JiangXY, ZhouXX, et al., 2010. Upregulation of vimentin and aberrant expression of E-cadherin/β‍-catenin complex in oral squamous cell carcinomas: correlation with the clinicopathological features and patient outcome. Mod Pathol, 23(2):213-224.

[53]LiuYC, YehCT, LinKH, 2020. Cancer stem cell functions in hepatocellular carcinoma and comprehensive therapeutic strategies. Cells, 9(6):1331.

[54]LiuYF, YangM, LuoJJ, et al., 2020. Radiotherapy targeting cancer stem cells “awakens” them to induce tumour relapse and metastasis in oral cancer. Int J Oral Sci, 12:19.

[55]LuCS, ShiehGS, WangCT, et al., 2017. Chemotherapeutics-induced Oct4 expression contributes to drug resistance and tumor recurrence in bladder cancer. Oncotarget, 8(19):30844-30858.

[56]LuCS, ShiauAL, SuBH, et al., 2020. Oct4 promotes M2 macrophage polarization through upregulation of macrophage colony-stimulating factor in lung cancer. J Hematol Oncol, 13:62.

[57]LuHQ, XieYYR, TranL, et al., 2020. Chemotherapy-induced S100A10 recruits KDM6A to facilitate OCT4-mediated breast cancer stemness. J Clin Invest, 130(9):4607-4623.

[58]MaZ, ZhangC, LiuXT, et al., 2020. Characterisation of a subpopulation of CD133+ cancer stem cells from Chinese patients with oral squamous cell carcinoma. Sci Rep, 10:8875.

[59]MishraS, TiwariV, AroraA, et al., 2020. Increased expression of Oct4, Nanog and CD24 predicts poor response to chemo-radiotherapy and unfavourable prognosis in locally advanced oral squamous cell carcinoma. Asian Pac J Cancer Prev, 21(9):2539-2547.

[60]MoroJDS, MaronezeMC, ArdenghiTM, et al., 2018. Oral and oropharyngeal cancer: epidemiology and survival analysis. Einstein (Sao Paulo), 16(2):eAO4248.

[61]NainiFB, AminishakibP, AbdollahiA, et al., 2019. Relative expression of OCT4, SOX2 and NANOG in oral squamous cell carcinoma versus adjacent non-tumor tissue. Asian Pac J Cancer Prev, 20(6):1649-1654.

[62]NamY, AsterJC, BlacklowSC, 2002. Notch signaling as a therapeutic target. Curr Opin Chem Biol, 6(4):501-509.

[63]NathansenJ, LukiyanchukV, HeinL, et al., 2021. Oct4 confers stemness and radioresistance to head and neck squamous cell carcinoma by regulating the homologous recombination factors PSMC3IP and RAD54L. Oncogene, 40(24):4214-4228.

[64]NguyenA, KimAH, KangMK, et al., 2022. Chronic alcohol exposure promotes cancer stemness and glycolysis in oral/oropharyngeal squamous cell carcinoma cell lines by activating NFAT signaling. Int J Mol Sci, 23(17):9779.

[65]NicholsJ, ZevnikB, AnastassiadisK, et al., 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95(3):379-391.

[66]NickoloffBJ, OsborneBA, MieleL, 2003. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene, 22(42):6598-6608.

[67]NörC, ZhangZC, WarnerKA, et al., 2014. Cisplatin induces Bmi-1 and enhances the stem cell fraction in head and neck cancer. Neoplasia, 16(2):137-146, W8.

[68]NotoZ, YoshidaT, OkabeM, et al., 2013. CD44 and SSEA-4 positive cells in an oral cancer cell line HSC-4 possess cancer stem-like cell characteristics. Oral Oncol, 49(8):787-795.

[69]OkamotoA, ChikamatsuK, SakakuraK, et al., 2009. Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck. Oral Oncol, 45(7):633-639.

[70]Olivares-UrbanoMA, Griñán-LisónC, MarchalJA, et al., 2020. CSC radioresistance: a therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells, 9(7):1651.

[71]OlsenCL, HsuPP, GlienkeJ, et al., 2004. Hedgehog-interacting protein is highly expressed in endothelial cells but down-regulated during angiogenesis and in several human tumors. BMC Cancer, 4:43.

[72]OshimoriN, 2020. Cancer stem cells and their niche in the progression of squamous cell carcinoma. Cancer Sci, 111(11):3985-3992.

[73]PaiS, YadavVK, KuoKT, et al., 2021. PDK1 inhibitor BX795 improves cisplatin and radio-efficacy in oral squamous cell carcinoma by downregulating the PDK1/CD47/Akt-mediated glycolysis signaling pathway. Int J Mol Sci, 22(21):11492.

[74]PandianJ, PanneerpandianP, SekarBT, et al., 2022. OCT4-mediated transcription confers oncogenic advantage for a subset of gastric tumors with poor clinical outcome. Funct Integr Genomics, 22(6):1345-1360.

[75]PangX, WangSS, ZhangM, et al., 2021. OSCC cell-secreted exosomal CMTM6 induced M2-like macrophages polarization via ERK1/2 signaling pathway. Cancer Immunol Immunother, 70(4):1015-1029.

[76]PesceM, ScholerHR, 2001. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells, 19(4):271-278.

[77]QuaglinoE, ContiL, CavalloF, 2020. Breast cancer stem cell antigens as targets for immunotherapy. Semin Immunol, 47:101386.

[78]RaoRS, RajuKL, AugustineD, et al., 2020. Prognostic significance of ALDH1, Bmi1, and OCT4 expression in oral epithelial dysplasia and oral squamous cell carcinoma. Cancer Control, 27(1):1073274820904959.

[79]RastiA, MehrazmaM, MadjdZ, et al., 2018. Co-expression of cancer stem cell markers OCT4 and NANOG predicts poor prognosis in renal cell carcinomas. Sci Rep, 8:11739.

[80]RavindranG, DevarajH, 2012. Aberrant expression of β‍-catenin and its association with ΔNp63, Notch-1, and clinicopathological factors in oral squamous cell carcinoma. Clin Oral Investig, 16(4):1275-1288.

[81]RavindranG, SawantSS, HagueA, et al., 2015. Association of differential β‍-catenin expression with Oct-4 and nanog in oral squamous cell carcinoma and their correlation with clinicopathological factors and prognosis. Head Neck, 37(7):982-993.

[82]ReersS, PfannerstillAC, MaushagenR, et al., 2014. Stem cell profiling in head and neck cancer reveals an Oct-4 expressing subpopulation with properties of chemoresistance. Oral Oncol, 50(3):155-162.

[83]ReyaT, MorrisonSJ, ClarkeMF, et al., 2001. Stem cells, cancer, and cancer stem cells. Nature, 414(6859):105-111.

[84]RizzinoA, WuebbenEL, 2016. Sox2/Oct4: a delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochim Biophys Acta, 1859(6):780-791.

[85]RodiniCO, LopesNM, LaraVS, et al., 2017. Oral cancer stem cells ‒ properties and consequences. J Appl Oral Sci, 25(6):708-715.

[86]RodriguesMFSD, de Aquino XavierFC, AndradeNP, et al., 2018. Prognostic implications of CD44, NANOG, OCT4, and BMI1 expression in tongue squamous cell carcinoma. Head Neck, 40(8):1759-1773.

[87]RoyS, KarM, RoyS, et al., 2019. KLF4 expression in the surgical cut margin is associated with disease relapse of oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol, 128(2):154-165.

[88]SatputePS, HazareyV, AhmedR, et al., 2013. Cancer stem cells in head and neck squamous cell carcinoma: a review. Asian Pac J Cancer Prev, 14(10):5579-5587.

[89]SawantS, GokulanR, DongreH, et al., 2016. Prognostic role of Oct4, CD44 and c-Myc in radio-chemo-resistant oral cancer patients and their tumourigenic potential in immunodeficient mice. Clin Oral Invest, 20(1):43-56.

[90]SharifzadF, GhavamiS, VerdiJ, et al., 2019. Glioblastoma cancer stem cell biology: potential theranostic targets. Drug Resist Updat, 42:35-45.

[91]ShenHF, LiYL, HuangSH, et al., 2022. A real-time pluripotency reporter for the long-term and real-time monitoring of pluripotency changes in induced pluripotent stem cells. Aging, 14(10):4445-4458.

[92]ShinKH, KimRH, 2018. An updated review of oral cancer stem cells and their stemness regulation. Crit Rev Oncog, 23(3-4):189-200.

[93]SiegelRL, MillerKD, JemalA, 2019. Cancer statistics, 2019. CA Cancer J Clin, 69(1):7-34.

[94]SinghA, SrivastavaAN, AkhtarS, et al., 2018. Correlation of CD133 and Oct-4 expression with clinicopathological and demographic parameters in oral squamous cell carcinoma patients. Natl J Maxillofac Surg, 9(1):8-13.

[95]SongJ, ChangI, ChenZ, et al., 2010. Characterization of side populations in HNSCC: highly invasive, chemoresistant and abnormal Wnt signaling. PLoS ONE, 5(7):e11456.

[96]SunL, XuYR, ZhangXM, et al., 2020. Mesenchymal stem cells functionalized sonodynamic treatment for improving therapeutic efficacy and compliance of orthotopic oral cancer. Adv Mater, 32(48):e2005295.

[97]SwainN, ThakurM, PathakJ, et al., 2020. SOX2, OCT4 and NANOG: the core embryonic stem cell pluripotency regulators in oral carcinogenesis. J Oral Maxillofac Pathol, 24(2):368-373.

[98]TahmasebiE, AlikhaniM, YazdanianA, et al., 2020. The current markers of cancer stem cell in oral cancers. Life Sci, 249:117483.

[99]TegginamaniAS, ShivakumarVH, KallarakkalTG, et al., 2020. Analysis of octamer-binding transcription factor-4 expression in oral leukoplakia. J Oral Maxillofac Pathol, 24(2):400.

[100]ThomaidouAC, BatsakiP, AdamakiM, et al., 2022. Promising biomarkers in head and neck cancer: the most clinically important miRNAs. Int J Mol Sci, 23(15):8257.

[101]TsaiLL, HuFW, LeeSS, et al., 2014. Oct4 mediates tumor initiating properties in oral squamous cell carcinomas through the regulation of epithelial-mesenchymal transition. PLoS ONE, 9(1):e87207.

[102]TulakeW, YuemaierR, ShengL, et al., 2018. Upregulation of stem cell markers ALDH1A1 and OCT4 as potential biomarkers for the early detection of cervical carcinoma. Oncol Lett, 16(5):5525-5534.

[103]UndenAB, HolmbergE, Lundh-RozellB, et al., 1996. Mutations in the human homologue of Drosophila patched (PTCH) in basal cell carcinomas and the gorlin syndrome: different in vivo mechanisms of PTCH inactivation. Cancer Res, 56(20):4562-4565.

[104]Varnum-FinneyB, XuLW, Brashem-SteinC, et al., 2000. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med, 6(11):1278-1281.

[105]VijayakumarG, NarwalA, KambojM, et al., 2020. Association of SOX2, OCT4 and WNT5A expression in oral epithelial dysplasia and oral squamous cell carcinoma: an immunohistochemical study. Head Neck Pathol, 14(3):749-757.

[106]WangYF, CaoZ, LiuFJ, et al., 2021. Clinical significance of activated Wnt/β‍-catenin signaling in apoptosis inhibition of oral cancer. Open Life Sci, 16(1):1045-1052.

[107]WangYJ, MengL, HuHY, et al., 2011. Oct-4B isoform is differentially expressed in breast cancer cells: hypermethylation of regulatory elements of Oct-4A suggests an alternative promoter and transcriptional start site for Oct-4B transcription. Biosci Rep, 31(2):109-115.

[108]WenKM, FuZX, WuXY, et al., 2013. Oct-4 is required for an antiapoptotic behavior of chemoresistant colorectal cancer cells enriched for cancer stem cells: effects associated with STAT3/survivin. Cancer Lett, 333(1):56-65.

[109]WongMMT, ChanHY, AzizNA, et al., 2021. Interplay of autophagy and cancer stem cells in hepatocellular carcinoma. Mol Biol Rep, 48(4):3695-3717.

[110]WuQ, WuZ, BaoCY, et al., 2019. Cancer stem cells in esophageal squamous cell cancer (review). Oncol Lett, 18(5):5022-5032.

[111]XieWW, YuJ, YinYJ, et al., 2022. OCT4 induces EMT and promotes ovarian cancer progression by regulating the PI3K/AKT/mTOR pathway. Front Oncol, 12:876257.

[112]YangF, XuJ, TangL, et al., 2017. Breast cancer stem cell: the roles and therapeutic implications. Cell Mol Life Sci, 74(6):951-966.

[113]YangPP, LiCS, ZhouQ, et al., 2022. Notum leads to potential pro-survival of OSCC through crosstalk between Shh and Wnt/β‍-catenin signaling via p-GSK3β. Int J Biochem Cell Biol, 153:106316.

[114]YuanFJ, ZhouWB, ZouC, et al., 2010. Expression of Oct4 in HCC and modulation to wnt/β‍-catenin and TGF‍-‍β signal pathways. Mol Cell Biochem, 343(1-2):155-162.

[115]ZhanT, RindtorffN, BoutrosM, 2017. Wnt signaling in cancer. Oncogene, 36(11):1461-1473.

[116]ZhangJM, WeiK, JiangM, 2018. OCT4 but not SOX2 expression correlates with worse prognosis in surgical patients with triple-negative breast cancer. Breast Cancer, 25(4):447-455.

[117]ZhangL, MengX, ZhuXW, et al., 2019. Long non-coding RNAs in oral squamous cell carcinoma: biologic function, mechanisms and clinical implications. Mol Cancer, 18:102.

[118]ZhangQZ, ShiSH, YenY, et al., 2010. A subpopulation of CD133+ cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett, 289(2):151-160.

[119]ZhaoXY, LuH, SunY, et al., 2020. Prognostic value of octamer binding transcription factor 4 for patients with solid tumors: a meta-analysis. Medicine (Baltimore), 99(42):e22804.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE