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1 IEEE-CIS dataset information

The IEEE-CIS dataset (Mainali et al., 2022; Nti and Somanathan, 2024), available on Kaggle
(https://www.kaggle.com/), is a representative real-world e-commerce transaction fraud dataset provided
by a world’s leading payment service company called Vesta (https://www.vesta.io/). This dataset con-
tains transaction records with diverse features, ranging from device types to product features. These diverse
features make it a suitable one for studying fraud detection and transaction behavior in financial platforms.
This dataset could also contain other factors like identity theft (Zou et al., 2020; Wang and Zhu, 2022),
another typical fraud type that could potentially contribute to compromised accounts. For example, e-
commerce transaction fraud is a potential consequence of identity theft. Therefore, we examine our model
on the IEEE-CIS dataset to detect compromised accounts via other factors like identity theft. Based on
the dataset, we identify unique user IDs to represent individual user accounts. The transaction behavior
sequences of each account have been extracted according to their associated user IDs. A compromised
account has one or more fraudulent transactions, and is labeled as 1. A normal account has no fraudulent
transactions, and is labeled as 0. With the above preprocessing strategy, we obtain 78 745 accounts. Among
them, there are 8585 compromised accounts. We split the extracted transaction behavior sequences into two
sub-sequences, which are used as inputs for our model. Because the temporal information for each account is
relatively sparse, we simply set the lengths of the two sub-sequences to be 5. Each account has 356 statistical
features after data preprocessing. Similarly, the training, validation, and test sets are randomly split with a
ratio of 3:1:1.

2 Experimental setup for baseline methods

• LightGBM (Ke et al., 2017): A well-known implementation of the gradient boosting decision tree
(GBDT) that is widely used in both industry and academia. In our experiments, we implement a
LightGBM model with 500 decision trees for capturing statistical features.

• GBDT embedding + NN (Ke et al., 2019): We leverage a two-layer fully-connected neural network as
a classifier based on the leaf embedding of a GBDT model trained on features with 500 decision trees.

• Long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997): A popular recurrent neural
network (RNN) to process sequences. As a variant of the vanilla RNN (Keren and Schuller, 2016), it
aims at tackling the gradient vanishing and explosion problem by introducing a memory cell controlled
by gate functions to better characterize long-term dependencies. In our experiments, the LSTM model
consists of two units for processing payment and login sequences, and a single-layer neural network for
making the final prediction according to the concatenation of the final hidden states of two sequences.

• GRU (Cho et al., 2014): A popular variant of RNN and LSTM. GRU reduces the number of parameters
and can converge faster than LSTM during training with a similar or lower loss (Cho et al., 2014). The
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GRU model uses the same setting as the LSTM model except for replacing LSTM units with GRU
units.

• DeepScan (Gong et al., 2018): A representative method for malicious account detection in location-
based social networks. The method captures information from the spatiotemporal data, and it models
user dynamic behaviors and statistical features. In our experiments, we follow the same setting as
DeepScan. The payment and login sequences are modeled by a bidirectional LSTM network, and
statistical features serve as the conventional features within DeepScan.

• Al-Qurishi et al. (2018)’s: An approach for detecting malicious behaviors in online social networks
by integrating content, graph, and profile data. This method exploits principal component analysis
(PCA) and random forest classifier to distinguish normal users from fake ones. In our experiments,
there is no corresponding graph data. We take statistical features as the input of PCA, and a random
forest classifier is used to predict whether an account is compromised or normal.

3 Performance of TSF for the IEEE-CIS dataset

3.1 Performance comparison

We present the results of all methods for the IEEE-CIS dataset in Table S1, and the corresponding
precision–recall curves are illustrated in Fig. S1. First, one can observe that the proposed TSF outperforms
all the baseline models for all metrics in Table S1. The result suggests that the proposed TSF can effectively
identify the compromised accounts.

Second, the sequential models (i.e., the GRU and LSTM models) focus on learning the temporal
relationships in users’ behavioral sequences, while the ensemble models (i.e., LightGBM, Al-Qurishi et al.

(2018)’s

Fig. S1 Precision–recall curves of TSF and baselines for the IEEE-CIS dataset

Table S1 Performances of TSF and baselines for the IEEE-CIS dataset

Model AUC R@80%P R@85%P R@90%P

LightGBM (Ke et al., 2017) 0.8786 0.3966 0.2983 0.1486
GBDT embedding+NN (Ke et al., 2019) 0.8836 0.3508 0.1950 0.1829
GRU (Cho et al., 2014) 0.8308 0.1072 0.0696 0.0149
LSTM (Hochreiter and Schmidhuber, 1997) 0.8058 0.0640 0.0376 0.0149
DeepScan (Gong et al., 2018) 0.8100 0.1259 0.0564 0.0099
Al-Qurishi et al. (2018)’s 0.7968 0.2790 0.2121 0.1044

TSF 0.8927 0.4133 0.3564 0.2878

AUC: area under curve; R@T%P: Recall@T%Precision. T : 80, 85, or 90. The best results are in bold with p < 0.001
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(2018)’s, and GBDT embedding + NN) use hand-crafted rules that may capture the anomalies in users’
multiple operations to classify accounts. Different from the results of the Meituan dataset, according to
Table S1, the ensemble models outperform the sequential models due to the sparse sequence patterns for
accounts from the IEEE-CIS dataset. Although DeepScan leverages both sequential models and ensemble
models, its performance suffers from poor feature fusion capabilities and inability to account for interactions
among temporal sequences from the same account.

Overall, TSF outperforms other baselines with a 0.91%–8.69% AUC increase and a 1.67%–34.93% recall
increase under three fixed thresholds of precision for the IEEE-CIS dataset. Furthermore, we conduct
McNemar’s test (McNemar, 1947) on the outcomes (in both Table S1 and Table S2), with the results
(p < 0.001) confirming that our model is distinctly different from other methods.

3.2 Ablation study

To explore the importance of each module in our model, we perform ablation studies by removing one
specific module at a time. Similarly, we evaluate the detection performance of the following variants for the
IEEE-CIS data. (1) TSF (w/o TPE): TSF without the whole temporal pattern encoder, i.e., the statistical
feature encoder in Fig. 4; (2) TSF (w/o SFE): TSF without the pre-trained GBDT or the single-layer neural
network to transform leaf embedding, i.e., the temporal pattern encoder in Fig. 4; (3) TSF (w/o IA): TSF
without the inter-attention mechanism to align payment behaviors with login behaviors; and (4) TSF (w/o
SA): TSF without the self-attention mechanism but using concatenation to fuse information.

As shown in Table S2 and Fig. S2, the performance degradation indicates that all modules of our model
contribute to the task of detecting compromised accounts for the IEEE-CIS dataset. The followings are the
analyses of the ablation study:

Temporal pattern encoder. By removing the temporal pattern encoder, the AUC score drops by 1% to
0.8827, and the recall scores also decrease with the improvement of precision scores. Our results highlight the

Table S2 Results of the ablation study for the IEEE-CIS dataset

Model AUC R@80%P R@85%P R@90%P

TSF (w/o TPE) 0.8827 (−1.00%) 0.3408 (−7.25%) 0.2955 (−6.09%) 0.2039 (−8.39%)
TSF (w/o SFE) 0.8268 (−6.59%) 0.0912 (−32.21%) 0.0282 (−32.82%) 0.0099 (−27.79%)
TSF (w/o IA) 0.8891 (−0.36%) 0.3558 (−5.75%) 0.2912 (−6.52%) 0.1939 (−9.39%)
TSF (w/o SA) 0.8890 (−0.37%) 0.3541 (−5.92%) 0.2906 (−6.58%) 0.2088 (−7.90%)

TSF 0.8927 0.4133 0.3564 0.2878
AUC: area under curve; R@T%P: Recall@T%Precision. T : 80, 85, or 90. The values in parentheses indicate the ratio of
metric value decrease compared with that of TSF. The best results are in bold with p < 0.001
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Fig. S2 Ablation study for the IEEE-CIS dataset
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importance of capturing the temporal patterns. For the IEEE-CIS dataset, each account has little temporal
information, resulting in a limited contribution from the temporal pattern encoder.

Statistical feature encoder. For the IEEE-CIS dataset, removing the statistical feature encoder has the
greatest impact on model performance. The AUC score drops by 6.59%, and the recall score decreases by up
to 32.82%. Additionally, the variant TSF (w/o SFE) model performs much worse than the variant TSF (w/o
TPE) for both the AUC score and the recall scores under different precision settings. The result highlights
the importance of specifying rules to capture significant behaviors. The technique of leaf embedding allows
us to apply the knowledge from a pre-trained GBDT model to detect compromised accounts.

Inter-attention module. The performance of our model decreased slightly after we removed the inter-
attention module, which captures the interaction between two different sequences. The result implies that the
inter-attention module also contributes to the detection performance of TSF as well as that the correlation
between two sequences is essential.

Self-attention module. In our experiments, the model with the self-attention module consistently
outperforms TSF (w/o SA) with the recall improved by up to 7.90%. Notably, this module can interpret the
detection results by demonstrating the significance of different representations to the final prediction.

4 Description of statistical features for the Meituan dataset

For the Meituan dataset, the statistical features are listed in Table S3. The features in the first four
subsets characterize the corresponding behaviors, while those in “other features” describe the overall activity
of the account. These features aim to capture the statistical features that can distinguish compromised
accounts from normal ones. For example, the unusually high “total payment amount” in a short period
suggests that the account may be undergoing abnormal transactions related to card fraud. Additionally, if
“the card holder’s name is not consistent with the real-name identity” when binding a new bank card, this
indicates that the account’s owner may have changed.

Table S3 Statistical features of each account used in the statistical feature encoder of TSF

Subset Statistical feature

Payment features

• Number of payment records in 30 d/90 d/6 months
• Number of failed payment records in 30 d/90 d
• Total payment amount in 30 d/90 d/6 months
• Average amount per payment in 30 d/90 d/6 months
• Total amount of credit payments in 30 d/90 d/6 months
• Average amount of credit payments in 30 d/90 d/6 months

Login features
• Number of logins via SMS in 90 d
• Number of failed login attempts in 90 d
• Number of logins via SMS on a new device in 90 d

Card binding features

• Number of card binding records
• Is the cardholder’s name consistent with the realname identity?
• Number of failed card bindings in 30 d/90 d
• Number of successful card bindings in 30 d/90 d

Payment password features
• Whether the account has attempts to retrieve payment password
• Whether the account has ever successfully retrieved payment password

Other features

• Maximum length of silent periods
• Total length of silent periods
• Number of silent periods
• Number of operations at midnight in 30 d/90 d
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