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1  Theoretical analysis of mode evolution of MNFs 
 

In the taper transition region, the alteration of geometric parameters disrupts the inherent orthogonality of 
the modes, resulting in mode coupling. As a consequence, the exact field within this region can be expressed as 
(Snyder and Love, 1984) 
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where 𝑏𝑏𝑘𝑘 is the complex amplitude. The coupling coefficient 𝐶𝐶𝑗𝑗𝑘𝑘 is given by (Snyder and Love, 1984; Digonnet 
et al., 2001) 
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where �̂�𝑒𝑗𝑗  and �̂�𝑒𝑘𝑘 are the normalized mode fields of two different modes, 𝑛𝑛 represents the spatial distribution of 
the refractive index, and 𝐴𝐴∞ represents the infinite cross-section. 

When the taper is steep (i.e., d𝜕𝜕
d𝑧𝑧

 is large), the effective refractive index of the fundamental mode decreases 
along the taper, approaching that of the cladding. Consequently, the fundamental mode gradually leaks out and 
becomes guided by the cladding-to-air interface. Given a larger difference in refractive index between the new 
cladding and the new core, the condition required for single-mode transmission cannot be met, and an exchange 
of power commences between the fundamental mode and the higher-order modes (Fig. S1a) (Siyu Chen, 2019). 
When the coupling coefficient obtained from Eq. (S2) is very small, there is no obvious power transfer in the 
propagation process. This is referred to as the adiabatic regime (Snyder and Love, 1984). 

According to Eqs.(S1) and (S2), the mode field distribution of different coupling modes at any position 
along the taper can be obtained (Leng and Yam, 2019; Siyu Chen, 2019; Zhou et al., 2022). The transmission 
characteristics can be customized by controlling the shape of the taper. 

The waist region of the MNF features a uniform diameter distribution where the new cladding layer is just 
air or another additional coating. The optical properties of the waist region can be analyzed with the Helmholtz 
equation similar to traditional optical fibers. As illustrated in Fig. S1b, as the fiber radius decreases, most of the 
higher-order modes are cut off, with only a subset of the lower-order modes being capable of persisting.  

The biconical MNFs with intermodal interference engender oscillating transmission spectra, endowing 
these fibers an exceptional ability to serve as an effective wavelength selection component in mode-locked 
wavelength-tunable fiber lasers (Fang et al., 2010; Dai et al., 2023).  
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(a)                                                                                           (b) 

Fig. S1  Mode evolution and properties of MNFs: (a) the power of different modes varying along the taper (Siyu Chen, 
2019); (b) diameter-dependent propagation constant of different modes of MNFs 

 
 

2  Theory of dispersion characteristics of MNFs 
 

The dispersion properties of MNFs can be characterized by the waveguide dispersion 𝐷𝐷𝑤𝑤 = d(𝛽𝛽1)
d𝜆𝜆

=

−2πc
𝜆𝜆2
𝛽𝛽2 , where 𝛽𝛽1 and 𝛽𝛽2 are the first and second derivatives of 𝛽𝛽, respectively. The expression for 𝛽𝛽1 can be 

represented as (Snyder and Love, 1984) 
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where 𝜂𝜂 is the proportion of the evanescent field and ∆ is a parameter describing the relative refractive index 
difference between the core and the cladding. The waveguide dispersion 𝐷𝐷𝑤𝑤 is related to 𝜂𝜂, which is signifi-
cantly affected by the diameter. This relationship suggests that diameter directly impacts waveguide dispersion. 

Different materials exhibit a variety of refractive index distributions, resulting in different mode field dis-
tributions and dispersion characteristics. The structure and cross-section shape influence the mode field distri-
bution and subsequently affect the dispersion. Triangular and hexagonal nanowires exhibit some deviation in 
the mode field distribution compared to cylindrical fibers and this inevitably affects the dispersion distribution 
(Ma et al., 2013). For PCFs, the influence of structural parameters (air hole diameter and pitch) on dispersion 
has been extensively studied (Mogilevtsev et al., 1998). Flat dispersion and a tunable zero-dispersion wave-
length can be achieved by adjusting these structural parameters (Medjouri et al., 2015; Stepniewski et al., 2018; 
Sultana et al., 2018; Thi et al., 2022). 

 
 

3  Other characteristics of MNFs 
 

MNFs obtained from traditional fibers have fiber tails at both ends, allowing them to be spliced with 
standard optical fibers and easily connected to other fibers and fiberized components (Brambilla, 2010). As a 
result, they offer low insertion loss capability. A typical value for insertion loss is 0.1 dB (Brambilla et al., 2009). 
In the case of polymer and semiconductor nanowires, their diameters often differ considerably from standard 
optical fibers. The smaller diameters of these materials make it challenging to achieve precise alignment with 
traditional fibers, resulting in a larger mismatch and increased insertion loss. Transmission loss usually results 
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from radiation (e.g., scattering from the structural nonuniformity) and absorption. Generally, as the diameter 
decreases, the transmission loss of an optical fiber increases. This is primarily due to the increased proportion of 
evanescent wave propagation and the susceptibility to scattering caused by surface contamination (Tong et al., 
2003). The impact of different surface roughness on transmission loss has been extensively studied (Kovalenko 
et al., 2008; Brambilla, 2010). For MNFs obtained from traditional fiber tapering, it is feasible to achieve high 
transmission efficiency by suppressing the energy transfer in the taper region (i.e., adiabaticity) and minimizing 
scattering losses in the waist region. The transmittance of an MNF with a waist diameter of 1.2 μm and a length 
of 10 cm can reach 99.4%. As the diameter decreases, the ultimate transmittance is limited by the intrinsic 
scattering loss. Propagation loss is estimated as 5.5×10−4 dB/mm for an MNF with a diameter of 0.8 μm (Yao 
et al., 2020). Compared with the MNFs obtained from a traditional optical fiber, a polymer nanowire usually has 
higher nonuniformity and consequently a higher optical loss. Significant advancements have been made in 
achieving low transmission losses in polymer fibers. The loss in a polystyrene/quantum dot nanowire with a 
diameter of 560 nm can be as low as 0.1-0.2 dB/mm (Gu et al., 2008; Meng et al., 2011).  

The high mechanical strength and compatibility of conventional optical fibers are also reasons why MNFs 
have potential applications in ultrafast optics. These features make MNFs well suited for coating and fabrication 
of all-fiber structures in ultrafast optics. 

 
 

4  Some comparison results from supercontinuum generation 
 

Table S1 summaries comparisons of SC generation using diverse types of optical fibers. However, the 
exploration of SC phenomena extends far beyond the confines of our summary, as doped fibers or highly non-
linear material fibers have been extensively harnessed to augment the pertinent spectral characteristics (Li et al., 
2019; Niang et al., 2019; Saini et al., 2019). For the sake of comparative analysis, our focus is primarily on silica 
fibers that have been instrumental in yielding SC spectra. Within this context, it is evident that the implemen-
tation of tapering techniques has greatly enhanced the efficacy of the SC generation process, offering an in-
creased spectral width per unit of power and length. While the tapered multimode fibers may not exclusively 
exhibit the highest magnitudes of this performance metric, their overall spectral uniformity has been meticu-
lously optimized, thus heralding a significant advancement in this field. 
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