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Proof S1 Proof of Theorem 1

The following proof is composed of two steps. First, we shall certify the boundedness of the estimate of
the pseudo-partial-derivative (PPD) matrix G;(h).
Step 1: boundedness of U;(h)

Define
wi1(h) wiaz(h) -+ @in(h)
. wWio1(h) wize(h) - @ian(h)
Gi(h) = . : , (S1)
7Aﬂi,nl(h) 7Aﬂl,nQ(h) T @z,nn(h)
which can also be rewritten as .
Qz,l(h)
N Uz,2(h)
Gim =] (52)
Bin(h)
where U; j(h) £ [@,j1(h) @ij2(h) ... @ijn(h)]. Then, at the triggering instant h = h’ , one has
Oi(hl —1) = Bi(h — 1), ui(hl — 1) = uy(h — 1). (S3)

The updating algorithm (16) is reformulated as

W(Ayi,j(h) — Gi,j(h — 1)Auz(h — 1))Au;r(h — 1)
v+ || Aui (b — 1)

Bij(h) =Big(h—1) + 7 (54)
where Ay; ;(h) = U; j(h—1)Au;(h—1). Defining the estimation error B; ; = U; ;(h) — U, ; (h) and combining
with Lemma 1 and algorithm (16), we arrive at

. . _ 0i,(h = DAu;(h — DAuf (h — 1)

Gij(h) = Ui j(h = 1) + Ui j(h) = Cij(h—1) ot [ Austh— 1) (S5)

It is inferred from the fact that ||5;(h)|| < m in Lemma 1, and we can obtain ||5;(h) — U;(h — 1)|| < 2m.
Applying the basic inequality yields

Gij(h — 1)Aui(h — 1)Aul (h — 1) H
v+ || Aui(h —1)|]?
YG;.j(h — 1)Aui(h — 1)Aul (b — 1)
- v+ || Aui(h — 1|
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(S6)
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which is further organized as follows:

- 70 j(h — 1) Aui(h — 1)Aul (b — 1) |12
’ Gij(h—1) = — g H
v+ ||Au;(h — 1) (S7)
Y Aui(h = D]\ IBiy(h = DAui(h — D]
:(—2+ 2) ’ a— + [T (h = D)%
v+ Au(h—DIF " v+ [Au(h— 1]
In addition, it is not tricky to confirm that there exist v € (0,1) and v > 0 such that
Au;(h —1
lau =D, )
v+ ||Au(h —1)||
which is further concluded that there exists a scalar p € (0, 1) satisfying the following condition:
. Y0 (h — 1)Aui(h — 1) Aul(
[Bis(h = 1) = 1= “D < ol - D). (9)
v+ || Aui(h = 1)
Substituting inequality (S9) into inequality (S6) yields
~ ~ P 2m(1 — ph=1)
18,5 < pllTii(h = D)l +2m < - < p" [Ty 5 (1) + 1, (510)

which implies that 3, j(h) is bounded. Since ||U3;(h)|| < m, it is readily seen from inequality (S10) that both
O;(h) and G;(h) are bounded. In addition, it is obvious that 0;(h) remains unchanged over the interval
h € (hi,hi, ). Thus, it can be calculated that 0;(h) is bounded at all instants. Because both U;(h) and U;(h)
are bounded, ‘one has that Q(h), A(h), and M (h) are bounded matrices. Thus, there exist Nn-dimensional
matrices Q, A, and M satisfying QT (h)Q(h) < Q, AT(h)A(h) < A, and MT(h)M (h) < M.

Step 2: consensus analysis

Construct the following Lyapunov function:
Vi(h) = 5" () (h). (511)

Along the trajectory of system (25), the difference of Vi (h) can be evaluated as follows:

AVi(h+1)

=Vi(h+1)—Vi(h)

=[M(R)§(h) + Q(h)d(h — 1) +n(h + 1) + A(h)B(h)e(h)] "
(M (h)g(h) + Q(R)d(h — 1) +n(h + 1) + A(h)B(h)e(h)] —

=" ()M ()M (k) — I +7)§(h) +d"(h = 1)QT (W)Q(h)d(h — 1) + 1" (h + 1)n(h + 1)
+B(h)e” (M) AT (R)A(R)B(Rh)e(h) +2d" (h — 1)QT ()M (h)j(h) + 20" (h + 1) M (h)§(h)
+28(h)e™ () AT ()M ()G (h) + 20" (h + 1)Q(h)d(h — 1) + 2B8(h)e™ (h) AT (h)n(h + 1)
+28(h)e™ (W) AT (h)Q(R)d(h — 1) — 75" (h)j(h).

g" (h)g(h) $12)

By means of Assumption 3, one has ||d;(h)|| < o(h)d. With Lemma 4, Eq. (S12) is further manipulated



as follows:

AV (h+1)
<g%(h )(élMT(h

+ 03y (h+ 1)n
<g'(h )(51 ~(1=-7)1)y ( )+£2€ZT( 1)Qd(h—1)

M(h) — (1 — T)I)g](h) + eQd‘T(h —1DQY(M)Q(h)d(h —1)
(

(S13)

where 21 (h) 2 [§T(h) d¥(h—1) 7T (h+1) B(h)eT(h)]T and 11 (h) £ e102(h — 1)d? + ean™(h + V)n(h +
1) +e36%(h) Zfil 0; with e1—e3 and ¢1—{g being positive constants.
It follows from inequality (S13) that

Vith+1) < (1 —71)Vi(h) + T1(h). (S14)

Noting that 0 < 7 < 1, ;2 ;7 = 00, and limp_,s @ = 0, it is simple to deduce from Lemma 2 that

limp_,oo Vi(h) = 0. Thus, we can draw the conclusion that limp_, [|5(h) — yi(h)|| = 0. The proof is
complete.

Proof S2 Proof of Theorem 2

Construct a Lyapunov function as follows:
Va(h) = g (h)g(h). (515)

Then, calculating the difference of V5(h) results in

AVa(h + 1)

= Va(h +1) = Va(h)
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(WAT(R)QR)d(h — 1) = 5 (h)j(h),



which further implies that

AVa(h 4 1)
< 9" (h) (LM ()M (h) = T)§(h) + Led" (h — 1)QT (M)Q(R)d(h — 1)
+ CB(h)S™ () AT () A(h)B(R)3(R) + LsB(h)e™ (h) AT (h )A(h)ﬂ(h)e(h)
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=

— woB(h)6T (R)B(R)S(h) + waB?(h)I? + ws B (h (Z 0; — e )
= 25 (h)II025(h) + Y2 (h),

where (25 (h) £ [T (h) azT(h— 1) B(R)§T(h) B(h)eT(h)]T and T2 (h) éw1a2(h—l)d2+w252(h)l2+w352(h)zijil 0;
with wi—ws and £7—¢15 being positive constants. Then, we can reasonably calculate that

O (W2 2a(h) < ~h2f (1) (), (S18)
where h = ppin{—1II2} > 0. Taking inequality (S17) into account, we can obtain
Vao(h+1) < Va(h) — b823 (h)22(h) 4 Ta(h). (S19)

Note that limj oo X2(h) = 0 and that 75(h) is bounded, which indicates that >~ ,215(h) < co. It can
be lightly derived from Lemma 3 that V(h) converges to 0. Hence, we arrive at limp_,o V2(h) = 0 and
limy o0 ||[y* — wi(R)]| = 0. According to the definition of limit, it can be shown that the limits of y;(h) and
g(h) exist. Since the limit point of the sequence F(h) is unique, based on Theorem 1, one can deduce that
limp 00 yi(h) = (k). Thus, we have limj,_,o §(h) = y*. The proof of Theorem 2 is complete.



