Supplementary materials for

Shanshan ZHENG, Shuai LIU, Licheng WANG, 2024. Event-triggered distributed optimization for model-free multiagent systems. Front Inform Technol Electron Eng, 25(2):214-224. https://doi.org/10.1631/FITEE. 2300568

Proof S1 Proof of Theorem 1

The following proof is composed of two steps. First, we shall certify the boundedness of the estimate of the pseudo-partial-derivative (PPD) matrix $\hat{\mho}_{i}(h)$.

Step 1: boundedness of $\hat{\mho}_{i}(h)$
Define

$$
\hat{\mho}_{i}(h) \triangleq\left[\begin{array}{cccc}
\hat{\varpi}_{i, 11}(h) & \hat{\varpi}_{i, 12}(h) & \cdots & \hat{\varpi}_{i, 1 n}(h) \tag{S1}\\
\hat{\varpi}_{i, 21}(h) & \hat{\varpi}_{i, 22}(h) & \cdots & \hat{\varpi}_{i, 2 n}(h) \\
\vdots & \vdots & & \vdots \\
\hat{\varpi}_{i, n 1}(h) & \hat{\varpi}_{i, n 2}(h) & \cdots & \hat{\varpi}_{i, n n}(h)
\end{array}\right]
$$

which can also be rewritten as

$$
\hat{\mho}_{i}(h) \triangleq\left[\begin{array}{c}
\hat{\mho}_{i, 1}(h) \tag{S2}\\
\hat{\mho}_{i, 2}(h) \\
\vdots \\
\hat{\mho}_{i, n}(h)
\end{array}\right]
$$

where $\hat{\mho}_{i, j}(h) \triangleq\left[\hat{\varpi}_{i, j 1}(h) \hat{\varpi}_{i, j 2}(h) \quad \ldots \hat{\varpi}_{i, j n}(h)\right]$. Then, at the triggering instant $h=h_{s}^{i}$, one has

$$
\begin{equation*}
\hat{\mho}_{i}\left(h_{s}^{i}-1\right)=\hat{\mho}_{i}(h-1), u_{i}\left(h_{s}^{i}-1\right)=u_{i}(h-1) . \tag{S3}
\end{equation*}
$$

The updating algorithm (16) is reformulated as

$$
\begin{equation*}
\hat{\mho}_{i, j}(h)=\hat{\mho}_{i, j}(h-1)+\frac{\gamma\left(\Delta y_{i, j}(h)-\hat{\mho}_{i, j}(h-1) \Delta u_{i}(h-1)\right) \Delta u_{i}^{\mathrm{T}}(h-1)}{\nu+\left\|\Delta u_{i}(h-1)\right\|^{2}}, \tag{S4}
\end{equation*}
$$

where $\Delta y_{i, j}(h)=\mho_{i, j}(h-1) \Delta u_{i}(h-1)$. Defining the estimation error $\tilde{\mho}_{i, j}=\mho_{i, j}(h)-\hat{\mho}_{i, j}(h)$ and combining with Lemma 1 and algorithm (16), we arrive at

$$
\begin{equation*}
\tilde{\mho}_{i, j}(h)=\tilde{\mho}_{i, j}(h-1)+\mho_{i, j}(h)-\mho_{i, j}(h-1)-\frac{\gamma \tilde{\mho}_{i, j}(h-1) \Delta u_{i}(h-1) \Delta u_{i}^{\mathrm{T}}(h-1)}{\nu+\left\|\Delta u_{i}(h-1)\right\|^{2}} . \tag{S5}
\end{equation*}
$$

It is inferred from the fact that $\left\|\mho_{i}(h)\right\| \leq m$ in Lemma 1, and we can obtain $\left\|\mho_{i}(h)-\mho_{i}(h-1)\right\| \leq 2 m$. Applying the basic inequality yields

$$
\begin{align*}
\left\|\tilde{\mho}_{i, j}(h)\right\| & \leq\left\|\mho_{i, j}(h)-\mho_{i, j}(h-1)\right\|+\left\|\tilde{\mho}_{i, j}(h-1)-\frac{\gamma \tilde{\mho}_{i, j}(h-1) \Delta u_{i}(h-1) \Delta u_{i}^{\mathrm{T}}(h-1)}{\nu+\left\|\Delta u_{i}(h-1)\right\|^{2}}\right\| \\
& \leq\left\|\tilde{\mho}_{i, j}(h-1)-\frac{\gamma \tilde{\mho}_{i, j}(h-1) \Delta u_{i}(h-1) \Delta u_{i}^{\mathrm{T}}(h-1)}{\nu+\left\|\Delta u_{i}(h-1)\right\|^{2}}\right\|+2 m \tag{S6}
\end{align*}
$$

which is further organized as follows:

$$
\begin{align*}
& \left\|\tilde{\mho}_{i, j}(h-1)-\frac{\gamma \tilde{\mho}_{i, j}(h-1) \Delta u_{i}(h-1) \Delta u_{i}^{\mathrm{T}}(h-1)}{\nu+\left\|\Delta u_{i}(h-1)\right\|^{2}}\right\|^{2} \\
= & \left(-2+\frac{\gamma\left\|\Delta u_{i}(h-1)\right\|}{\nu+\left\|\Delta u_{i}(h-1)\right\|^{2}}\right) \frac{\gamma\left\|\tilde{\mho}_{i, j}(h-1) \Delta u_{i}(h-1)\right\|}{\nu+\left\|\Delta u_{i}(h-1)\right\|^{2}}+\left\|\tilde{\mho}_{i, j}(h-1)\right\|^{2} . \tag{S7}
\end{align*}
$$

In addition, it is not tricky to confirm that there exist $\gamma \in(0,1)$ and $\nu>0$ such that

$$
\begin{equation*}
-2+\frac{\gamma\left\|\Delta u_{i}(h-1)\right\|}{\nu+\left\|\Delta u_{i}(h-1)\right\|^{2}}<0 \tag{S8}
\end{equation*}
$$

which is further concluded that there exists a scalar $\rho \in(0,1)$ satisfying the following condition:

$$
\begin{equation*}
\left\|\tilde{\mho}_{i, j}(h-1)-\frac{\gamma \tilde{\mho}_{i, j}(h-1) \Delta u_{i}(h-1) \Delta u_{i}^{\mathrm{T}}(h-1)}{\nu+\left\|\Delta u_{i}(h-1)\right\|^{2}}\right\| \leq \rho\left\|\tilde{\mho}_{i, j}(h-1)\right\| . \tag{S9}
\end{equation*}
$$

Substituting inequality (S9) into inequality (S6) yields

$$
\begin{equation*}
\left\|\tilde{\mho}_{i, j}(h)\right\| \leq \rho\left\|\tilde{\mho}_{i, j}(h-1)\right\|+2 m \leq \cdots \leq \rho^{h-1}\left\|\tilde{\mho}_{i, j}(1)\right\|+\frac{2 m\left(1-\rho^{h-1}\right)}{1-\rho} \tag{S10}
\end{equation*}
$$

which implies that $\tilde{\mho}_{i, j}(h)$ is bounded. Since $\left\|\mho_{i}(h)\right\| \leq m$, it is readily seen from inequality (S10) that both $\tilde{\mho}_{i}(h)$ and $\hat{\mho}_{i}(h)$ are bounded. In addition, it is obvious that $\hat{\mho}_{i}(h)$ remains unchanged over the interval $h \in\left(h_{s}^{i}, h_{s+1}^{i}\right)$. Thus, it can be calculated that $\hat{\mho}_{i}(h)$ is bounded at all instants. Because both $\mho_{i}(h)$ and $\hat{\mho}_{i}(h)$ are bounded, one has that $Q(h), A(h)$, and $M(h)$ are bounded matrices. Thus, there exist $N n$-dimensional matrices \bar{Q}, \bar{A}, and \bar{M} satisfying $Q^{\mathrm{T}}(h) Q(h) \leq \bar{Q}, A^{\mathrm{T}}(h) A(h) \leq \bar{A}$, and $M^{\mathrm{T}}(h) M(h) \leq \bar{M}$.

Step 2: consensus analysis
Construct the following Lyapunov function:

$$
\begin{equation*}
V_{1}(h)=\tilde{y}^{\mathrm{T}}(h) \tilde{y}(h) . \tag{S11}
\end{equation*}
$$

Along the trajectory of system (25), the difference of $V_{1}(h)$ can be evaluated as follows:

$$
\begin{align*}
& \Delta V_{1}(h+1) \\
= & V_{1}(h+1)-V_{1}(h) \\
= & {[M(h) \tilde{y}(h)+Q(h) \tilde{d}(h-1)+\eta(h+1)+A(h) \beta(h) e(h)]^{\mathrm{T}} } \\
& \cdot[M(h) \tilde{y}(h)+Q(h) \tilde{d}(h-1)+\eta(h+1)+A(h) \beta(h) e(h)]-\tilde{y}^{\mathrm{T}}(h) \tilde{y}(h) \\
= & \tilde{y}^{\mathrm{T}}(h)\left(M^{\mathrm{T}}(h) M(h)-I+\tau\right) \tilde{y}(h)+\tilde{d}^{\mathrm{T}}(h-1) Q^{\mathrm{T}}(h) Q(h) \tilde{d}(h-1)+\eta^{\mathrm{T}}(h+1) \eta(h+1) \tag{S12}\\
& +\beta(h) e^{\mathrm{T}}(h) A^{\mathrm{T}}(h) A(h) \beta(h) e(h)+2 \tilde{d}^{\mathrm{T}}(h-1) Q^{\mathrm{T}}(h) M(h) \tilde{y}(h)+2 \eta^{\mathrm{T}}(h+1) M(h) \tilde{y}(h) \\
& +2 \beta(h) e^{\mathrm{T}}(h) A^{\mathrm{T}}(h) M(h) \tilde{y}(h)+2 \eta^{\mathrm{T}}(h+1) Q(h) \tilde{d}(h-1)+2 \beta(h) e^{\mathrm{T}}(h) A^{\mathrm{T}}(h) \eta(h+1) \\
& +2 \beta(h) e^{\mathrm{T}}(h) A^{\mathrm{T}}(h) Q(h) \tilde{d}(h-1)-\tau \tilde{y}^{\mathrm{T}}(h) \tilde{y}(h) .
\end{align*}
$$

By means of Assumption 3, one has $\left\|\tilde{d}_{i}(h)\right\| \leq \alpha(h) d$. With Lemma 4, Eq. (S12) is further manipulated
as follows:

$$
\begin{align*}
& \Delta V_{1}(h+1) \\
\leq & \tilde{y}^{\mathrm{T}}(h)\left(\breve{\ell_{1}} M^{\mathrm{T}}(h) M(h)-(1-\tau) I\right) \tilde{y}(h)+\breve{\ell_{2}} \tilde{d}^{\mathrm{T}}(h-1) Q^{\mathrm{T}}(h) Q(h) \tilde{d}(h-1) \\
& +\breve{\ell}_{3} \eta^{\mathrm{T}}(h+1) \eta(h+1)+\breve{\ell}_{4} \beta(h) e^{\mathrm{T}}(h) A^{\mathrm{T}}(h) A(h) \beta(h) e(h) \\
\leq & \tilde{y}^{\mathrm{T}}(h)\left(\breve{\ell_{1}} \bar{M}-(1-\tau) I\right) \tilde{y}(h)+\breve{\ell}_{2} \tilde{d}^{\mathrm{T}}(h-1) \bar{Q} \tilde{d}(h-1) \\
& +\breve{\ell}_{3} \eta^{\mathrm{T}}(h+1) \eta(h+1)+\breve{\ell}_{4} \beta(h) e^{\mathrm{T}}(h) \bar{A} \beta(h) e(h) \tag{S13}\\
& -\varepsilon_{1} \tilde{d}^{\mathrm{T}}(h-1) \tilde{d}(h-1)+\varepsilon_{1} \alpha^{2}(h-1) d^{2} \\
& -\varepsilon_{2} \eta^{\mathrm{T}}(h+1) \eta(h+1)+\varepsilon_{2} \eta^{\mathrm{T}}(h+1) \eta(h+1) \\
& +\varepsilon_{3} \beta^{2}(h)\left(\sum_{i=1}^{N} \theta_{i}-e^{\mathrm{T}}(h) e(h)\right)-\tau \tilde{y}^{\mathrm{T}}(h) \tilde{y}(h) \\
= & \Omega_{1}^{\mathrm{T}}(h) \Pi_{1} \Omega_{1}(h)-\tau \tilde{y}^{\mathrm{T}}(h) \tilde{y}(h)+\Upsilon_{1}(h),
\end{align*}
$$

where $\Omega_{1}(h) \triangleq\left[\tilde{y}^{\mathrm{T}}(h) \tilde{d}^{\mathrm{T}}(h-1) \eta^{\mathrm{T}}(h+1) \beta(h) e^{\mathrm{T}}(h)\right]^{\mathrm{T}}$ and $\Upsilon_{1}(h) \triangleq \varepsilon_{1} \alpha^{2}(h-1) d^{2}+\varepsilon_{2} \eta^{\mathrm{T}}(h+1) \eta(h+$ 1) $+\varepsilon_{3} \beta^{2}(h) \sum_{i=1}^{N} \theta_{i}$ with $\varepsilon_{1}-\varepsilon_{3}$ and $\ell_{1}-\ell_{6}$ being positive constants.

It follows from inequality (S13) that

$$
\begin{equation*}
V_{1}(h+1) \leq(1-\tau) V_{1}(h)+\Upsilon_{1}(h) . \tag{S14}
\end{equation*}
$$

Noting that $0<\tau<1, \sum_{h=0}^{\infty} \tau=\infty$, and $\lim _{h \rightarrow \infty} \frac{r_{1}(h)}{\tau}=0$, it is simple to deduce from Lemma 2 that $\lim _{h \rightarrow \infty} V_{1}(h)=0$. Thus, we can draw the conclusion that $\lim _{h \rightarrow \infty}\left\|\bar{y}(h)-y_{i}(h)\right\|=0$. The proof is complete.

Proof S2 Proof of Theorem 2

Construct a Lyapunov function as follows:

$$
\begin{equation*}
V_{2}(h)=\hat{y}^{\mathrm{T}}(h) \hat{y}(h) . \tag{S15}
\end{equation*}
$$

Then, calculating the difference of $V_{2}(h)$ results in

$$
\begin{align*}
& \Delta V_{2}(h+1) \\
= & V_{2}(h+1)-V_{2}(h) \\
= & {[M(h) \hat{y}(h)+Q(h) \tilde{d}(h-1)+A(h) \beta(h) \delta(h)+A(h) \beta(h) e(h)]^{\mathrm{T}} } \\
& \cdot[M(h) \hat{y}(h)+Q(h) \tilde{d}(h-1)+A(h) \beta(h) \delta(h)+A(h) \beta(h) e(h)]-\hat{y}^{\mathrm{T}}(h) \hat{y}(h) \\
= & \hat{y}^{\mathrm{T}}(h)\left(M^{\mathrm{T}}(h) M(h)-I\right) \hat{y}(h)+\tilde{d}^{\mathrm{T}}(h-1) Q^{\mathrm{T}}(h) Q(h) \tilde{d}(h-1) \tag{S16}\\
& +\beta(h) \delta^{\mathrm{T}}(h) A^{\mathrm{T}}(h) A(h) \beta(h) \delta(h)+\beta(h) e^{\mathrm{T}}(h) A^{\mathrm{T}}(h) A(h) \beta(h) e(h) \\
& +2 \tilde{d}^{\mathrm{T}}(h-1) Q^{\mathrm{T}}(h) M(h) \hat{y}(h)+2 \beta(h) \delta^{\mathrm{T}}(h) A^{\mathrm{T}}(h) M(h) \hat{y}(h) \\
& +2 \beta(h) e^{\mathrm{T}}(h) A^{\mathrm{T}}(h) M(h) \hat{y}(h)+2 \beta(h) \delta^{\mathrm{T}}(h) A^{\mathrm{T}}(h) Q(h) \tilde{d}(h-1) \\
& +2 \beta(h) e^{\mathrm{T}}(h) A^{\mathrm{T}}(h) A(h) \beta(h) \delta(h)+2 \beta(h) e^{\mathrm{T}}(h) A^{\mathrm{T}}(h) Q(h) \tilde{d}(h-1)-\hat{y}^{\mathrm{T}}(h) \hat{y}(h),
\end{align*}
$$

which further implies that

$$
\begin{aligned}
& \Delta V_{2}(h+1) \\
\leq & \hat{y}^{\mathrm{T}}(h)\left(\breve{\ell}_{5} M^{\mathrm{T}}(h) M(h)-I\right) \hat{y}(h)+\breve{\ell}_{6} \tilde{d}^{\mathrm{T}}(h-1) Q^{\mathrm{T}}(h) Q(h) \tilde{d}(h-1) \\
& +\breve{\ell}_{7} \beta(h) \delta^{\mathrm{T}}(h) A^{\mathrm{T}}(h) A(h) \beta(h) \delta(h)+\breve{\ell}_{8} \beta(h) e^{\mathrm{T}}(h) A^{\mathrm{T}}(h) A(h) \beta(h) e(h) \\
\leq & \hat{y}^{\mathrm{T}}(h)\left(\breve{\ell}_{5} \bar{M}-I\right) \hat{y}(h)+\breve{\ell}_{6} \tilde{d}^{\mathrm{T}}(h-1) \bar{Q} \tilde{d}(h-1)+\breve{\ell}_{7} \beta(h) \delta^{\mathrm{T}}(h) \bar{A} \beta(h) \delta(h) \\
& +\breve{\ell}_{8} \beta(h) e^{\mathrm{T}}(h) \bar{A} \beta(h) e(h)-\omega_{1} \tilde{d}^{\mathrm{T}}(h-1) \tilde{d}(h-1)+\omega_{1} \alpha^{2}(h-1) d^{2} \\
& -\omega_{2} \beta(h) \delta^{\mathrm{T}}(h) \beta(h) \delta(h)+\omega_{2} \beta^{2}(h) l^{2}+\omega_{3} \beta^{2}(h)\left(\sum_{i=1}^{N} \theta_{i}-e^{\mathrm{T}}(h) e(h)\right) \\
= & \Omega_{2}^{\mathrm{T}}(h) \Pi_{2} \Omega_{2}(h)+\Upsilon_{2}(h),
\end{aligned}
$$

where $\Omega_{2}(h) \triangleq\left[\hat{y}^{\mathrm{T}}(h) \quad \tilde{d}^{\mathrm{T}}(h-1) \quad \beta(h) \delta^{\mathrm{T}}(h) \quad \beta(h) e^{\mathrm{T}}(h)\right]^{\mathrm{T}}$ and $\Upsilon_{2}(h) \triangleq \omega_{1} \alpha^{2}(h-1) d^{2}+\omega_{2} \beta^{2}(h) l^{2}+\omega_{3} \beta^{2}(h) \sum_{i=1}^{N} \theta_{i}$ with $\omega_{1}-\omega_{3}$ and $\ell_{7}-\ell_{12}$ being positive constants. Then, we can reasonably calculate that

$$
\begin{equation*}
\Omega_{2}^{\mathrm{T}}(h) \Pi_{2} \Omega_{2}(h) \leq-\hbar \Omega_{2}^{\mathrm{T}}(h) \Omega_{2}(h), \tag{S18}
\end{equation*}
$$

where $\hbar \triangleq \rho_{\min }\left\{-\Pi_{2}\right\}>0$. Taking inequality (S17) into account, we can obtain

$$
\begin{equation*}
V_{2}(h+1) \leq V_{2}(h)-\hbar \Omega_{2}^{\mathrm{T}}(h) \Omega_{2}(h)+\Upsilon_{2}(h) . \tag{S19}
\end{equation*}
$$

Note that $\lim _{h \rightarrow \infty} \Upsilon_{2}(h)=0$ and that $\Upsilon_{2}(h)$ is bounded, which indicates that $\sum_{h=0}^{\infty} \Upsilon_{2}(h)<\infty$. It can be lightly derived from Lemma 3 that $V(h)$ converges to 0 . Hence, we arrive at $\lim _{h \rightarrow \infty} V_{2}(h)=0$ and $\lim _{h \rightarrow \infty}\left\|y^{*}-y_{i}(h)\right\|=0$. According to the definition of limit, it can be shown that the limits of $y_{i}(h)$ and $\bar{y}(h)$ exist. Since the limit point of the sequence $\bar{y}(h)$ is unique, based on Theorem 1, one can deduce that $\lim _{h \rightarrow \infty} y_{i}(h)=\bar{y}(h)$. Thus, we have $\lim _{h \rightarrow \infty} \bar{y}(h)=y^{*}$. The proof of Theorem 2 is complete.

