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Proof S1 Proof of Theorem 1

The following proof is composed of two steps. First, we shall certify the boundedness of the estimate of
the pseudo-partial-derivative (PPD) matrix �̂i(h).

Step 1: boundedness of �̂i(h)

Define

�̂i(h) �

⎡
⎢⎢⎢⎣

�̂i,11(h) �̂i,12(h) · · · �̂i,1n(h)

�̂i,21(h) �̂i,22(h) · · · �̂i,2n(h)
...

...
...

�̂i,n1(h) �̂i,n2(h) · · · �̂i,nn(h)

⎤
⎥⎥⎥⎦ , (S1)

which can also be rewritten as

�̂i(h) �

⎡
⎢⎢⎢⎢⎣

�̂i,1(h)

�̂i,2(h)
...

�̂i,n(h)

⎤
⎥⎥⎥⎥⎦
, (S2)

where �̂i,j(h) �
[
�̂i,j1(h) �̂i,j2(h) . . . �̂i,jn(h)

]
. Then, at the triggering instant h = hi

s , one has

�̂i(h
i
s − 1) = �̂i(h− 1), ui(h

i
s − 1) = ui(h− 1). (S3)

The updating algorithm (16) is reformulated as

�̂i,j(h) = �̂i,j(h− 1) +
γ(Δyi,j(h)− �̂i,j(h− 1)Δui(h− 1))ΔuT

i (h− 1)

ν + ‖Δui(h− 1)‖2 , (S4)

where Δyi,j(h) = �i,j(h−1)Δui(h−1). Defining the estimation error �̃i,j = �i,j(h)−�̂i,j(h) and combining
with Lemma 1 and algorithm (16), we arrive at

�̃i,j(h) = �̃i,j(h− 1) + �i,j(h)− �i,j(h− 1)− γ�̃i,j(h− 1)Δui(h− 1)ΔuT
i (h− 1)

ν + ‖Δui(h− 1)‖2 . (S5)

It is inferred from the fact that ‖�i(h)‖ ≤ m in Lemma 1, and we can obtain ‖�i(h) − �i(h − 1)‖ ≤ 2m.
Applying the basic inequality yields

‖�̃i,j(h)‖ ≤ ‖�i,j(h)− �i,j(h− 1)‖+
∥∥∥�̃i,j(h− 1)− γ�̃i,j(h− 1)Δui(h− 1)ΔuT

i (h− 1)

ν + ‖Δui(h− 1)‖2
∥∥∥

≤
∥∥∥�̃i,j(h− 1)− γ�̃i,j(h− 1)Δui(h− 1)ΔuT

i (h− 1)

ν + ‖Δui(h− 1)‖2
∥∥∥+ 2m,

(S6)
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which is further organized as follows:

∥∥∥�̃i,j(h− 1)− γ�̃i,j(h− 1)Δui(h− 1)ΔuT
i (h− 1)

ν + ‖Δui(h− 1)‖2
∥∥∥
2

=
(
− 2 +

γ‖Δui(h− 1)‖
ν + ‖Δui(h− 1)‖2

)γ‖�̃i,j(h− 1)Δui(h− 1)‖
ν + ‖Δui(h− 1)‖2 + ‖�̃i,j(h− 1)‖2.

(S7)

In addition, it is not tricky to confirm that there exist γ ∈ (0, 1) and ν > 0 such that

−2 +
γ‖Δui(h− 1)‖

ν + ‖Δui(h− 1)‖2 < 0, (S8)

which is further concluded that there exists a scalar ρ ∈ (0, 1) satisfying the following condition:

∥∥∥�̃i,j(h− 1)− γ�̃i,j(h− 1)Δui(h− 1)ΔuT
i (h− 1)

ν + ‖Δui(h− 1)‖2
∥∥∥ ≤ ρ‖�̃i,j(h− 1)‖. (S9)

Substituting inequality (S9) into inequality (S6) yields

‖�̃i,j(h)‖ ≤ ρ‖�̃i,j(h− 1)‖+ 2m ≤ · · · ≤ ρh−1‖�̃i,j(1)‖+ 2m(1− ρh−1)

1− ρ
, (S10)

which implies that �̃i,j(h) is bounded. Since ‖�i(h)‖ ≤ m, it is readily seen from inequality (S10) that both
�̃i(h) and �̂i(h) are bounded. In addition, it is obvious that �̂i(h) remains unchanged over the interval
h ∈ (hi

s, h
i
s+1). Thus, it can be calculated that �̂i(h) is bounded at all instants. Because both �i(h) and �̂i(h)

are bounded, one has that Q(h), A(h), and M(h) are bounded matrices. Thus, there exist Nn-dimensional
matrices Q̄, Ā, and M̄ satisfying QT(h)Q(h) ≤ Q̄, AT(h)A(h) ≤ Ā, and MT(h)M(h) ≤ M̄ .

Step 2: consensus analysis
Construct the following Lyapunov function:

V1(h) = ỹT(h)ỹ(h). (S11)

Along the trajectory of system (25), the difference of V1(h) can be evaluated as follows:

ΔV1(h+ 1)

=V1(h+ 1)− V1(h)

=[M(h)ỹ(h) +Q(h)d̃(h− 1) + η(h+ 1) +A(h)β(h)e(h)]T

· [M(h)ỹ(h) +Q(h)d̃(h− 1) + η(h+ 1) +A(h)β(h)e(h)] − ỹT(h)ỹ(h)

=ỹT(h)(MT(h)M(h)− I + τ)ỹ(h) + d̃T(h− 1)QT(h)Q(h)d̃(h− 1) + ηT(h+ 1)η(h+ 1)

+ β(h)eT(h)AT(h)A(h)β(h)e(h) + 2d̃T(h− 1)QT(h)M(h)ỹ(h) + 2ηT(h+ 1)M(h)ỹ(h)

+ 2β(h)eT(h)AT(h)M(h)ỹ(h) + 2ηT(h+ 1)Q(h)d̃(h− 1) + 2β(h)eT(h)AT(h)η(h+ 1)

+ 2β(h)eT(h)AT(h)Q(h)d̃(h− 1)− τ ỹT(h)ỹ(h).

(S12)

By means of Assumption 3, one has ‖d̃i(h)‖ ≤ α(h)d. With Lemma 4, Eq. (S12) is further manipulated
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as follows:

ΔV1(h+ 1)

≤ ỹT(h)
(

̆1M

T(h)M(h)− (1− τ)I
)
ỹ(h) + 
̆2d̃

T(h− 1)QT(h)Q(h)d̃(h− 1)

+ 
̆3η
T(h+ 1)η(h+ 1) + 
̆4β(h)e

T(h)AT(h)A(h)β(h)e(h)

≤ ỹT(h)
(

̆1M̄ − (1− τ)I

)
ỹ(h) + 
̆2d̃

T(h− 1)Q̄d̃(h− 1)

+ 
̆3η
T(h+ 1)η(h+ 1) + 
̆4β(h)e

T(h)Āβ(h)e(h)

− ε1d̃
T(h− 1)d̃(h− 1) + ε1α

2(h− 1)d2

− ε2η
T(h+ 1)η(h+ 1) + ε2η

T(h+ 1)η(h+ 1)

+ ε3β
2(h)

(
N∑
i=1

θi − eT(h)e(h)

)
− τ ỹT(h)ỹ(h)

= ΩT
1 (h)Π1Ω1(h)− τ ỹT(h)ỹ(h) + Υ1(h),

(S13)

where Ω1(h) � [ỹT(h) d̃T(h− 1) ηT(h+ 1) β(h)eT(h)]T and Υ1(h) � ε1α
2(h − 1)d2 + ε2η

T(h + 1)η(h +

1) + ε3β
2(h)

∑N
i=1 θi with ε1–ε3 and 
1–
6 being positive constants.

It follows from inequality (S13) that

V1(h+ 1) ≤ (1− τ)V1(h) + Υ1(h). (S14)

Noting that 0 < τ < 1,
∑∞

h=0 τ = ∞, and limh→∞
Υ1(h)

τ = 0, it is simple to deduce from Lemma 2 that
limh→∞ V1(h) = 0. Thus, we can draw the conclusion that limh→∞ ‖ȳ(h) − yi(h)‖ = 0. The proof is
complete.

Proof S2 Proof of Theorem 2

Construct a Lyapunov function as follows:

V2(h) = ŷT(h)ŷ(h). (S15)

Then, calculating the difference of V2(h) results in

ΔV2(h+ 1)

= V2(h+ 1)− V2(h)

= [M(h)ŷ(h) +Q(h)d̃(h− 1) +A(h)β(h)δ(h) +A(h)β(h)e(h)]T

· [M(h)ŷ(h) +Q(h)d̃(h− 1) +A(h)β(h)δ(h) +A(h)β(h)e(h)] − ŷT(h)ŷ(h)

= ŷT(h)(MT(h)M(h)− I)ŷ(h) + d̃T(h− 1)QT(h)Q(h)d̃(h− 1)

+ β(h)δT(h)AT(h)A(h)β(h)δ(h) + β(h)eT(h)AT(h)A(h)β(h)e(h)

+ 2d̃T(h− 1)QT(h)M(h)ŷ(h) + 2β(h)δT(h)AT(h)M(h)ŷ(h)

+ 2β(h)eT(h)AT(h)M(h)ŷ(h) + 2β(h)δT(h)AT(h)Q(h)d̃(h− 1)

+ 2β(h)eT(h)AT(h)A(h)β(h)δ(h) + 2β(h)eT(h)AT(h)Q(h)d̃(h− 1)− ŷT(h)ŷ(h),

(S16)
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which further implies that

ΔV2(h+ 1)

≤ ŷT(h)
(

̆5M

T(h)M(h)− I
)
ŷ(h) + 
̆6d̃

T(h− 1)QT(h)Q(h)d̃(h− 1)

+ 
̆7β(h)δ
T(h)AT(h)A(h)β(h)δ(h) + 
̆8β(h)e

T(h)AT(h)A(h)β(h)e(h)

≤ ŷT(h)
(

̆5M̄ − I

)
ŷ(h) + 
̆6d̃

T(h− 1)Q̄d̃(h− 1) + 
̆7β(h)δ
T(h)Āβ(h)δ(h)

+ 
̆8β(h)e
T(h)Āβ(h)e(h)− ω1d̃

T(h− 1)d̃(h− 1) + ω1α
2(h− 1)d2

− ω2β(h)δ
T(h)β(h)δ(h) + ω2β

2(h)l2 + ω3β
2(h)

(
N∑
i=1

θi − eT(h)e(h)

)

= ΩT
2 (h)Π2Ω2(h) + Υ2(h),

(S17)

whereΩ2(h)� [ŷT(h) d̃T(h−1) β(h)δT(h) β(h)eT(h)]T and Υ2(h)�ω1α
2(h−1)d2+ω2β

2(h)l2+ω3β
2(h)

∑N
i=1 θi

with ω1–ω3 and 
7–
12 being positive constants. Then, we can reasonably calculate that

ΩT
2 (h)Π2Ω2(h) ≤ −�ΩT

2 (h)Ω2(h), (S18)

where � � ρmin{−Π2} > 0. Taking inequality (S17) into account, we can obtain

V2(h+ 1) ≤ V2(h)− �ΩT
2 (h)Ω2(h) + Υ2(h). (S19)

Note that limh→∞ Υ2(h) = 0 and that Υ2(h) is bounded, which indicates that
∑∞

h=0 Υ2(h) < ∞. It can
be lightly derived from Lemma 3 that V (h) converges to 0. Hence, we arrive at limh→∞ V2(h) = 0 and
limh→∞ ‖y∗ − yi(h)‖ = 0. According to the definition of limit, it can be shown that the limits of yi(h) and
ȳ(h) exist. Since the limit point of the sequence ȳ(h) is unique, based on Theorem 1, one can deduce that
limh→∞ yi(h) = ȳ(h). Thus, we have limh→∞ ȳ(h) = y∗. The proof of Theorem 2 is complete.


