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1  Parameters of the prediction module 

The input feature map has dimensions of C_in × H_in × W_in, where C_in represents the number of input 
channels, and H_in and W_in represent the height and width of the input feature map, respectively. In the re-
sidual block with three convolutional layers, the first convolutional layer utilizes C_out1 convolutional kernels 
of size 3×3 with padding of 2 and a stride of 1, where C_out1 is the number of output channels for the first 
convolutional layer. Then, the LeakyReLU activation function is applied. The second convolutional layer uses 
C_out2 convolutional kernels of size 3×3, where C_out2 is the number of output channels for the second con-
volutional layer, with padding of 2 and a stride of 1. The third convolutional layer serves as a skip connection 
layer and introduces an additional 1×1 convolutional layer to adjust the channel number, allowing information 
to be directly passed to subsequent layers, effectively alleviating optimization issues when training deep net-
works. The input feature map is transformed using a 1×1 convolution to match the dimensions of the feature 
map output by the second convolutional layer. The transformed input feature map is then added to the output of 
convolutional layer 3 and is subjected to the LeakyReLU activation function. Next, the input is passed to a 
residual block with two convolutional layers. Its structure is similar to the residual block with three convolu-
tional layers, but does not include the skip connection layer (convolutional layer 3). The purpose of the residual 
group blocks is to handle features in a more in-depth manner by stacking two residual blocks with different 
convolutional layers and capturing higher-level image information. 

 
2  Threshold derivation 

In order to achieve higher compression results and free up more space, threshold control is used to select 
encoding methods. The threshold is derived as follows, and important symbols are represented in Table S1. 

Assumptions: 
Number of differing bits recorded in bit-plane comparison encoding: db_num = 3. 
Number of bits used in prediction error encoding: bit_pred = 4. 
Premises: 
Pixel values range from 0 to 255. 
Maximum number of bits used in bit-plane comparison encoding: bit_cmp_max = 24. 
Maximum number of bits used in prediction error encoding: bit_pred_max = 8 (7 bits for error value, 1 bit 

for sign). 
Compression Effectiveness Comparison: 
Length of encoding produced by bit-plane comparison: len_cmp = db_num + db × 3. 
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Length of encoding produced by prediction error: len_pred = bit_pred × 3. 
Threshold Derivation: 
Assuming that prediction error encoding is used when the prediction error for each pixel is less than T, and 

bit-plane comparison encoding is used when the number of bits used for bit-plane comparison encoding is 
bit_cmp. 

If the number of bits used in bit-plane comparison encoding is greater than the number of bits used in 
prediction error encoding—i.e., db_num + db × 3 > bit_pred × 3—we choose prediction error encoding. If the 
number of bits used in bit-plane comparison encoding is less than or equal to the number of bits used in pre-
diction error encoding—i.e., db_num + db × 3 <= bit_pred × 3—we choose bit-plane comparison encoding. 

Therefore, we need to find the minimum bit_cmp value that satisfies db_num + db × 3 > bit_pred × 3. 
Solving the Inequality: 
db_num + db × 3 > bit_pred × 3 
(1 + db) > bit_pred 
1 > bit_pred - db 
bit_pred - 1 < db. 
Maximum bit_cmp Value: 
The maximum value for db is bit_pred - 1 because db_num = 3. Therefore, the maximum bit_cmp value is 

(bit_pred - 1) × 3 + 3 = 12. Considering bit_pred_max = 8, bit_pred = 4, and removing the sign bit, the maxi-
mum value for maxe is (111)2 = (7)10. 

Results: 
The derived threshold is: T = 12, τ = 7. 
When & &(3 3 )maxe maxd T≤ + × >τ , the encoding method based on the prediction error is used. 
When & &(3 3 ) & &maxe maxd T maxd maxe≤ + × ≤ ≤ >Pτ τ τ , the encoding method based on the bit-plane 

comparison is used. 
 

Table S1  Symbol representation 
Representation Symbol 

Block pixel representation of the cover image R, spp1, spp2, spp3 
Block pixel representation of the original image R, sp1, sp2, sp3 
Highest differing bit in bit-plane comparison maxd 
Maximum prediction error within a block maxe 
Threshold for prediction error T 
Threshold for pixel values τ 
Number of bits used in bit-plane comparison encoding bit_cmp 
Number of differing bits recorded in bit-plane comparison encoding db_num 
Number of bits required to record differing bits in bit-plane comparison encoding db 
Number of bits used in prediction error encoding bit_pred 
Prediction error value eφ 
The original image C 
The cross, circle, triangle, square sets C1, C2, C3, C4 
The cover images representing the true values of the preserved sets C1, C2, C3 and C4 Ccross, Ccircle, Ctriangle, Csquare 
The shared encrypted cover image generated from the original image C_sharen 
non-overlapping blocks obtained by shuffling the original image C and the cover 
image (Ccross, Ccircle, Ctriangle, Csquare) 

C′, C′cross, C′circle, C′triangle, C′square 

The shared encrypted cover generated from predicted images C′cross, C′circle, C′triangle, 
C′square 

cross_sharen, circle_sharen, 
 triangle_sharen, square_sharen 
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3  Correlation coefficient of the shared encrypted images  

Table S2  Vertical correlation coefficient (cor_v), horizontal correlation coefficient (cor_h), and diagonal correlation coef-
ficient (cor_d) of the shared encrypted images preserving true values of the cross set 

  Airplane Baboon Barbara Boat Jetplane Lena Pepper Man Tiffany 

original image 

cor_v 0.9463 0.8634 0.8933 0.9454 0.9668 0.9736 0.9808 0.9448 0.9370 
cor_h 0.9458 0.7545 0.9583 0.9748 0.9646 0.9868 0.9831 0.9558 0.9578 
cor_d 0.8961 0.7195 0.8815 0.9264 0.9371 0.9609 0.9657 0.9194 0.9141 

cross_share1′ 
cor_v 0.3751 0.5114 0.5275 0.5009 0.3526 0.5126 0.5196 0.5835 0.4914 
cor_h -0.3340 -0.4198 -0.4178 -0.3974 -0.3026 -0.4110 -0.4165 -0.4678 -0.4025 
cor_d -0.3374 -0.4209 -0.4214 -0.4026 -0.3100 -0.4164 -0.4195 -0.4704 -0.4065 

cross_share2′ 
cor_v 0.5910 0.6332 0.6379 0.6280 0.5795 0.6329 0.6346 0.6556 0.6267 
cor_h -0.4770 -0.5136 -0.5149 -0.5013 -0.4601 -0.5104 -0.5132 -0.5351 -0.5064 
cor_d -0.4803 -0.5170 -0.5191 -0.5060 -0.4651 -0.5142 -0.5168 -0.5390 -0.5091 

cross_share3′ 
cor_v -0.1867 -0.3148 -0.0089 0.1097 -0.1222 0.0942 0.0504 -0.1830 -0.2294 
cor_h -0.2220 -0.0323 -0.0735 -0.1484 -0.1988 -0.2093 -0.1790 0.0157 -0.0792 
cor_d -0.1555 -0.0573 -0.1277 -0.1965 -0.2190 -0.2345 -0.2327 -0.1786 -0.1145 

           
 
4  Training specifics 

The proposed intelligent predictors are trained on a computational setup consisting of an Intel Core 
i5-12400F CPU clocked at 2.5 GHz and an NVIDIA 3060 GPU. To construct the training dataset, we randomly 
selected 1000 images from the widely used ImageNet dataset. All images were converted to grayscale and sized 
to dimensions of 512×512 pixels. We applied the preprocessing method described in Section 3.1 to the input 
images of all prediction models. This preprocessing step augmented the training dataset to include a total of 
4000 images. 

For optimization, we employed the backpropagation technique along with the Adam optimizer. These 
methods allowed us to iteratively refine the models' performance. We performed several training iterations to 
enhance the predictive capabilities of the proposed ResNet-based predictor. The training process involved ad-
justing the model's internal parameters to minimize the prediction errors, utilizing the training dataset. The 
computational resources of the Intel Core i5-12400F CPU and NVIDIA 3060 GPU enabled efficient training of 
the models, leveraging their respective capabilities. 

By adhering to these training procedures and employing powerful computational resources, we were able 
to develop and optimize the proposed ResNet-based predictor. These models are designed to achieve superior 
performance in pixel prediction tasks, leveraging the spatial attention mechanism. The training process ensured 
that the models were well-suited for the intended objectives and were capable of delivering accurate predictions 
for various image inputs. These advancements contribute to the field of image compression and demonstrate the 
potential for further improvements in this area. 

The definition of training loss for a batch size of 4 is as follows: 
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5  Conclusions and future directions 

We present a novel approach for reversible data hiding in encrypted data, integrating intelligent prediction 
and additive secret sharing. Our proposed method encompasses several key components, including the training 
of an intelligent predictor, encrypted predictions, additive encryption, and joint encoding for embedding. The 
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method exhibits noteworthy advantages, such as efficient hiding, robust security, adaptive joint encoding, and 
lossless recovery. 

Our method offers several advantages that contribute to its effectiveness: (1) Efficient Hiding. The incor-
poration of an intelligent predictor in the data hiding process enhances the efficiency of concealing information 
within encrypted data. The predictor ensures precise predictions, optimizing the hiding mechanism. (2) Robust 
Security. Utilizing additive secret sharing for encryption introduces a robust security layer. The requirement for 
multiple shares for image reconstruction enhances the overall security of the encrypted data, providing a bal-
anced trade-off between security and efficiency. (3)  Adaptive Joint Encoding. The adaptive joint encoding 
technique employed during the embedding process maximizes capacity while minimizing any potential degra-
dation in image quality. This adaptability is crucial for achieving efficient data hiding in various scenarios. (4) 
Lossless Recovery. A key feature of our method is the capability for lossless recovery, even in scenarios where 
certain shares are lost. The intelligent predictor plays a pivotal role in accurately filling missing shares during 
the recovery process, ensuring the integrity of the original data. 

While our proposed method showcases promising features, there are avenues for future improvements and 
exploration: (1) Predictor Enhancement. To further enhance the accuracy of predictions and embedding, future 
work will focus on improving the intelligent predictor. This may involve refining the neural network architec-
ture, incorporating advanced training techniques, and exploring additional features for improved prediction 
capabilities. (2) Enhanced Embedding Strategies. Research efforts will be directed towards optimizing the 
embedding process to achieve increased capacity without compromising image quality. Exploring advanced 
joint encoding methods and considering alternative data hiding strategies will be part of this endeavor. (3) 
Robustness Evaluation. A comprehensive evaluation of the method's robustness in diverse scenarios, including 
different image types, encryption strengths, and prediction challenges, will be conducted. This will provide 
insights into the versatility and reliability of the proposed approach. (4) Security Analysis. Future work will 
involve a more extensive security analysis, including vulnerability assessments and testing against potential 
attacks. This rigorous examination will further validate the robustness and reliability of our reversible data 
hiding scheme. (5) Real-world Applications. Exploring real-world applications and assessing factors such as 
scalability, computational efficiency, and applicability to diverse use cases will be crucial for the practical im-
plementation of the proposed method. This includes considering the method's suitability for various scenarios 
and its potential impact on real-world settings. 

In conclusion, our proposed method  signifies a significant stride towards efficient and secure reversible 
data hiding in encrypted data. The outlined future directions aim to refine and extend the capabilities of the 
method, making valuable contributions to the field. We anticipate that the ongoing enhancements and explora-
tions will further solidify the method's effectiveness, ensuring its relevance and impact in the dynamic land-
scape of reversible data hiding. 
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