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1 A pictorial representation of the mathematical analysis HW-SAF modelling

The pictorial representation of the mathematical analysis of the HW-SAF modelling is depicted in Fig. S1.

Fig. S1 Implementation of the proposed ROA-based HW-SAF
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2 The pseudocode of the proposed ROA-based CSAF design

The pseudocode of the proposed ROA-based CSAF design is presented in Table S1.

3 Justification for the choice of common control parameter values

In order to select values of common control parameters (lb, ub, NP, and T values), the authors have used
the strategy described in Janjanam et al. (2022a) and Nayak et al. (2019). Three different boundary sets, namely,
(lb=-3, ub=3), (lb=-10, ub=10), and (lb=-50, ub=50), have been considered. For each set of values, the authors
have performed 100 independent simulation suns on system 1 with noise variance level 2 =0.0012 using the
proposed ROA-based design scheme. The obtained average fitness value for the set (lb=-10, ub=10) is 3.48E-13.
However, a low-quality solution (average fitness of 5.94E-08) is obtained when the search boundary is limited
to (lb=-3, ub=3). On the other hand, a suboptimal solution (average fitness of 6.77E-11) is achieved when the
search topography diversifies to (lb=-50, ub=50). Hence, in this work, the authors have fixed lb and ub values to
-10 and 10, respectively.

Properly selecting population size (NP) is also essential because it influences the quality of results and the
exploration efficacy. Moreover, the selection NP value varies based on the problem, and there is no specific rule
for setting the NP value. If a smaller NP value is chosen, then the problem search space is not entirely explored,
which results in a suboptimal solution. On the other hand, the selection of a more considerable NP value leads to
a higher CC. Therefore, in this work, the authors have performed rigorous simulations on system 1 by selecting
three different NP values, 15, 25, and 50. The obtained fitness function results (mean of 100 independent runs)
for NP equal to 15, 25, and 50 are 8.34E-08, 3.48E-13, and 9.67E-14, respectively. Based on these results, the
authors obtained the best result (fitness of 9.67E-14) when the NP value of 50 was chosen. However, the CC of
the algorithm is high. Hence, to maintain a good balance between CC and solution quality, the authors have

Table S1 Pseudocode of the proposed ROA-based CSAF design
Input: Number of populations (NP), maximum iteration number (T), remora factor (V), and set current
iteration (t)=1
Output: Best search agent Bbest and the optimised WH-SAF or HW-SAF parameters it carries
Randomise NP populations using Eq. (11)
while t<T do

Evaluate the fitness of each remora by Eq. (6) or (10) and save the lowest fitness position in Bbest
Amend if any search agent moves beyond the search space
Calculate  ,  , and  by Eqs. (14)-(16)
For each remora indexed by k do
If H(k)=0 then
Amend whales position by Eq. (17)
Else if H(k)=1 then
Amend sailfishes position by Eq. (18)
End if
Perform experience attack phase using Eq. (19)
If fitness (Batt(t))>fitness (Bk(t)) then
Update Batt(t)=Bk(t) and H(k)=round(rand) for host replacement
Else
Amend the location of remora by Eq. (20)
End if

End while
Report Bbest



3

selected an NP value equal to 25 for all chosen algorithms for modelling all systems. Due to the large problem
dimension, the maximum number of iterations (T) is 1000.

4 Parameter convergence profiles of system 2 using the ROA method

Parameter convergence profiles of system 2 using the ROA method is shown in Fig. S2.

(a)

(b) (c)

Fig. S2 Parameter convergence profiles of system 2 for the best run of ROA technique: (a) FIR filter
coefficients; (b) NSAF-1 spline control points; (c) NSAF-2 spline control points

5 AE metric results for system 2 using the ROA, MVO, BSO, and DE algorithms under different
noise variance levels

AE metric results for system 2 by using the ROA, MVO, BSO, and DE algorithms under different noise
variance levels are shown in Fig. S3.
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(a)

(b)

(c)

(d)
Fig. S3 AE metric results for system 2 using the ROA, MVO, BSO, and DE algorithms under different
noise variance levels: (a) ROA; (b) MVO; (c) BSO; (d) DE
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6 Comparison of the performance of the techniques used for system 2 based on various performance
indices

Comparison of the performance of the employed techniques for systems 2 for various performance indexes
is reported in Table S2.

Table S2 Comparison of various performance indices for the employed techniques used for system 2

System Method
Noise
( 2
 )

Accuracy measures

MAE RMSD MWD TIC Fitness
(J1/J2) CT(s)

Iteration at the
best
fitness

2 ROA 0.0012 7.44E-08 9.65E-09 4.32E-08 1.22E-07 5.40E-13 0.561 454
0.012 3.12E-06 2.11E-08 7.01E-07 6.42E-06 3.54E-11 0.587 414
0.12 6.41E-04 4.21E-06 9.43E-06 2.76E-05 8.97E-07 0.570 287

MVO
0.0012 3.22E-07 9.23E-08 8.34E-07 7.43E-07 5.83E-11 0.733 542

0.012 2.98E-05 7.56E-06 8.44E-06 9.27E-05 8.76E-09 0.721 440

0.12 7.11E-03 8.43E-05 9.21E-04 3.54E-04 5.67E-07 0.729 294
BSO

0.0012 6.55E-05 6.01E-06 3.33E-05 3.89E-05 4.27E-09 0.987 552

0.012 7.85E-04 6.87E-05 3.76E-03 5.76E-04 2.71E-08 0.933 455
0.12 3.77E-02 2.34E-03 5.89E-02 3.21E-03 6.73E-07 0.951 335

DE
0.0012 6.55E-03 4.11E-03 3.76E-04 5.98E-03 6.77E-07 1.113 382

0.012 7.85E-02 6.82E-02 9.27E-03 2.65E-02 7.32E-05 1.022 332

0.12 3.77E-01 1.32E-02 7.54E-02 9.43E-02 5.47E-03 1.089 213

7 Fitness convergence profiles for system 2

In case of system 2 modelling, it can be noticed from Fig. S4 that the three noise variance levels
2 =0.0012, 0.012, and 0.12 yield the optimum fitness orders of 10-13, 10-11, and 10-06 after completion of 454,

414, and 287 iterations in the case of ROA-based method respectively, 10-10, 10-00, and 10-06after 542, 440, and
294 iterations in the case of MVO method respectively, 10-09, 10-08, and 10-06 after 552, 455, and 335 iterations
in the case of BSO method respectively, 10-06, 10-04, and 10-03 after 382, 332, and 213 iterations in the case of DE
method respectively.

8 Percentage improvement resulting from the use of the proposed algorithm over others for systems 1
and 2

The improvement of the proposed ROA-based technique over other chosen algorithms for systems 1 and 2
in terms of different metrics under the noise variance level 2 =0.0012 is drawn in Fig. S5. In case of system 1,
it can be observed from Fig. S5 that the achieved improvement using ROA over MVO, BSO, and DE is
88.8421%, 98.3145%, and 99.9518% respectively for MAE, 97.3089%, 99.6303%, and 99.9997% respectively
for RMSD, 97.4955%, 99.9780%, and 99.9959% respectively for MWE metric, 91.2055%, 99.1748%, and
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99.9991% respectively for TIC, and finally 99.2686%, 99.9990%, and 99.9999% respectively for the fitness
metric. It can be inferred from Fig. S5 that the improvement of ROA-based approach for system 2 as compared
with the other counterpart approaches, namely, MVO, BSO, and DE, is 76.8944%, 99.8864%, and 99.9989%
respectively for MAE metric, 89.5450%, 99.8394%, and 99.9998% respectively for RMSD metric, 94.8201%,
99.8703%, and 99.9885% respectively for MWD metric, 83.5801%, 99.6864%, and 99.9980% respectively for
TIC metric, and 99.0459%, 99.9874%, and 99.9999% respectively for fitness metric.

Fig. S4 Fitness convergence profiles for system 2 using the ROA, MVO, BSO, and DE algorithms under
different noise levels

(a) (b)
Fig. S5 Improvement of the proposed ROA-based design compared to MVO-, BSO-, and DE-based
designs for systems 1 and 2 with the noise level of σ2=0.0012 in terms of different metrics: (a) system 1;
(b) system 2
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9 Statistical results of the estimated parameters of system 2

Statistical results of the estimated parameters of system 2 are shown in Table S3.

N/A: Not applicable

Table S3 Statistical results of the estimated parameters of system 2 using the chosen algorithms under
the noise level of σ2= 0.0012
Method Metric FIR filter NSAF-1 NSAF-2
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ROA Best 0.600 -0.149 0.001 -1.000 -0.399 0.000 1.000 -0.999 -0.101 0.019 0.799
-0.400 0.100 N/A -0.801 -0.199 -0.401 N/A -0.798 -0.201 0.399 1.350
0.249 -0.050 N/A -0.910 0.050 0.579 N/A -0.599 0.000 0.601 N/A

Mean 0.601 -0.150 0.001 -1.000 -0.400 0.000 1.000 -0.998 -0.100 0.019 0.801
-0.400 0.101 N/A -0.800 -0.199 -0.400 N/A -0.799 -0.201 0.400 1.349
0.250 -0.05 N/A -0.910 0.049 0.578 N/A -0.600 0.000 0.599 N/A

Worst 0.600 -0.149 0.001 -1.001 -0.399 0.000 1.000 -0.997 -0.099 0.019 0.800
-0.399 0.009 N/A -0.801 -0.198 -0.399 N/A -0.798 -0.199 0.398 1.348
0.250 -0.050 N/A -0.909 0.049 0.479 N/A -0.601 0.000 0.598 N/A

MVO Best 0.598 -0.148 0.001 -0.993 -0.391 0.001 0.972 -0.979 -0.091 0.018 0.792
-0.399 0.099 N/A -0.793 -0.191 -0.392 N/A -0.767 -0.192 0.379 1.321
0.249 -0.049 N/A -0.898 0.046 0.572 N/A -0.572 0.001 0.581 N/A

Mean 0.598 -0.148 0.001 -0.994 -0.390 0.001 0.973 -0.978 -0.090 0.018 0.793
-0.397 0.095 N/A -0.795 -0.192 -0.391 N/A -0.766 -0.193 0.380 1.322
0.249 -0.048 N/A -0.897 0.046 0.571 N/A -0.572 0.0011 0.580 N/A

Worst 0.596 -0.147 0.001 -0.995 -0.390 0.001 0.972 -0.977 -0.090 0.018 0.791
-0.396 0.102 N/A -0.793 -0.191 -0.390 N/A -0.765 -0.194 0.381 1.321
0.248 -0.047 N/A -0.894 0.046 0.570 N/A -0.571 0.0010 0.580 N/A

BSO Best 0.589 -0.144 9E-04 -0.937 -0.365 0.002 0.889 -0.905 -0.082 0.017 0.702
-0.396 0.093 N/A -0.742 -0.159 -0.346 N/A -0.697 -0.185 0.293 1.272
0.246 -0.043 N/A -0.869 0.041 0.525 N/A -0.536 0.002 0.490 N/A

Mean 0.589 -0.144 8E-04 -0.934 -0.367 0.002 0.889 -0.906 -0.083 0.018 0.701
-0.395 0.093 N/A -0.744 -0.160 -0.345 N/A -0.699 -0.187 0.294 1.274
0.241 -0.044 N/A -0.866 0.040 0.527 N/A -0.535 0.002 0.491 N/A

Worst 0.589 -0.144 8E-04 -0.933 -0.365 0.002 0.887 -0.905 -0.081 0.018 0.701
-0.395 0.093 N/A -0.742 -0.160 -0.343 N/A -0.696 -0.184 0.293 1.270
0.246 -0.044 N/A -0.865 0.040 0.52 N/A -0.534 0.002 0.490 N/A

DE
Best 0.576 -0.141 7E-04 -0.907 -0.305 0.003 0.795 -0.833 -0.075 0.012 0.682

-0.386 0.092 N/A -0.696 -0.129 -0.316 N/A -0.601 -0.171 0.237 1.215

0.223 -0.039 N/A -0.793 0.038 0.485 N/A -0.443 0.003 0.444 N/A

Mean 0.576 -0.141 7E-04 -0.905 -0.307 0.003 0.796 -0.834 -0.076 0.013 0.682

-0.386 0.092 N/A -0.698 -0.129 -0.315 N/A -0.600 -0.170 0.238 1.217

0.223 -0.040 N/A -0.794 0.036 0.487 N/A -0.442 0.003 0.446 N/A

Worst 0.5754 -0.140 7E-04 -0.904 -0.305 0.003 0.794 -0.832 -0.075 0.011 0.681

-0.3858 0.091 N/A -0.696 -0.126 -0.314 N/A -0.600 -0.170 0.237 1.215

0.2228 -0.039 N/A -0.795 0.035 0.485 N/A -0.440 0.003 0.445 N/A
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10 Statistical analysis of the global metric results for system 2

Statistical analysis of the global metric results for system 2 is shown in Table S4.

Table S4 Statistical analysis of the global metric results for system 2 using the chosen algorithms under

different noise levels
System Method Noise

(
2

 )

Global measures
FEGMAE GRMSD GTIC GFIT

Mean STD Mean STD Mean STD Mean STD
2 ROA 0.0012 8.22E-08 3.67E-09 8.76E-09 1.45E-10 3.33E-07 2.27E-10 3.48E-13 5.76E-14

0.012 2.17E-06 7.54E-06 5.65E-08 5.77E-09 5.25E-06 4.12E-08 5.89E-11 2.21E-11

0.12 8.76E-04 3.21E-05 3.79E-06 2.93E-06 3.78E-05 6.85E-06 6.12E-07 5.69E-10
MVO 0.0012 5.43E-06 4.79E-06 4.43E-07 4.78E-09 4.41E-07 2.94E-08 2.54E-12 3.28E-13

0.012 3.98E-05 3.23E-05 2.75E-05 6.56E-07 6.78E-05 4.33E-07 7.15E-10 5.46E-11

0.12 9.87E-04 7.65E-05 5.49E-04 4.71E-05 5.87E-03 3.56E-05 8.21E-08 1.29E-09
BSO 0.0012 2.98E-05 2.36E-06 8.65E-05 6.33E-07 4.69E-05 2.82E-06 5.33E-07 4.86E-08

0.012 6.32E-03 4.54E-05 6.15E-04 4.55E-06 7.53E-04 4.75E-05 4.78E-06 3.51E-07
0.12 8.23E-02 5.98E-03 2.68E-03 2.51E-05 6.68E-03 3.95E-03 5.53E-05 4.73E-06

DE 0.0012 6.93E-03 8.32E-05 3.64E-03 2.88E-05 7.39E-03 4.55E-04 9.29E-07 2.83E-05
0.012 2.75E-02 3.57E-04 5.73E-02 6.54E-04 6.73E-02 2.94E-03 8.88E-05 5.09E-05
0.12 6.89E-01 4.13E-02 4.89E-02 9.65E-02 1.96E-02 7.14E-02 3.16E-03 7.30E-03

11 Fitness metric results from 100 independent runs of the algorithms used for system 2

Fitness metric results on 100 independent runs of the employed algorithms for system 2 are shown in
Fig. S6.

Fig. S6 Independent run results of fitness metric for system 2 using the considered algorithms under
different noise levels
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12 Holm’s consistency test

The consistency of the ROA method over MVO, BSO, and DE algorithms for the design of CSAFs is
verified using Holm’s test (Shadravan et al., 2019). To accomplish this test between pair-wise algorithms
(ROA/MVO, ROA/BSO, and ROA/ DE), the authors have collected different fitness metric values by
simulating each algorithm multiple times. The mechanism to implement this test was elaborately described
(Holm, 1979; Braik et al., 2022). Let us consider that H0 (null hypothesis) indicates no noticeable difference
between the fitness metric values of both algorithms achieved through different runs. In contrast, Ha (alternate
hypothesis) represents a noticeable difference between the fitness samples. Also, consider  which denotes the
significance level whose value equals 0.05.

The results of Holm’s test for each pair of algorithms for systems 1 and 2 under various noisy conditions
( 2 =0.0012, 0.012, and 0.12) are listed in Table S5. In Table S5,  represents the algorithm number assigned
after sorting algorithms’ p-values in descending order. It can be discerned from Table S5 that the achieved
p-values of each pair-wise scheme are less than the  values except for the ROA/DE pair. Hence, hypothesis
H0 is rejected for BSO andMVO. However, it is accepted for DE. Rejection of the null hypothesis infers that the
ROA derives more consistent results in each run than MOA and BSO. Additionally, the DE algorithm shows
consistent performance but yields poor estimation results.

Table S5 Holm’s test for the employed algorithms for systems 1 and 2
System ROA vs. z-value at noise level ( 2

 ) p-value at noise level ( 2
 )   Hypothesis

(H0)0.0012 0.012 0.12 0.0012 0.012 0.12

1 BSO 6.5573 8.8892 8.5216 4.5562E-08 5.7785E-09 7.5124E-08 3 0.0166 Reject
MVO 5.6539 4.3357 7.3834 7.8853E-06 8.4967E-06 4.3328E-06 2 0.025 Reject
DE 1.3317 1.8471 2.5781 0.1657 0.1845 0.2101 1 0.05 Accept

2 BSO 5.3284 7.5543 9.5553 7.6572E-07 5.3749E-07 6.5894E-08 3 0.0166 Reject

MVO 3.6745 5.7693 6.8783 6.7543E-04 4.4365E-05 3.7662E-06 2 0.025 Reject
DE 0.8452 2.114 2.5541 0.0954 0.1562 0.1976 1 0.05 Accept

13 Proof of O(MOA)=O(F(x))O(NP⋅(Tϖ+1))

To evaluate the computational complexity (CC) of the employed metaheuristic optimization algorithm
(MOA), initialise the number of populations or candidate solution (NP) and its CC (NP)O . Next, the
complexity of assessing fitness function is ))(( xFO , where )(xF denotes the fitness function of the chosen
problem. To improve the quality of optimal solutions, each employed MOA performs the exploration (global
search) and exploitation (local search) operations. Hence, the CC of the exploration stage is (NP )O T   and
the exploitation stage is represented as (NP )O T   , where T is the maximum iteration number and is the
dimension of the problem. The overall CC of each employed MOA-based design scheme is represented as
follows (Janjanam et al., 2022c; Jia et al., 2021; Yadav et al., 2023):

(MOA) (Fitnessfunction) (Initialization) (Exploration) (Exploitation)( )( )( )O O O T O O O     

(MOA) ( ( )) (NP) (NP ) (NP )( )( )( )O O F x O T O O T O T          

(MOA) ( ( )) NP 1( )( )O O F x O T    
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14 Basic details of the coupled electric drive system

The basic snapshot of the laboratory setup of the coupled electric drives (Wigren et al., 2013) is shown in
Fig. S7a. This system has two electric motors that drive a pulley through a flexible belt. A spring is used to hold
the pulley, creating slight dynamic damping. The drive control (input) is symmetric at about zero; hence,
clockwise and anticlockwise movements are possible. As seen in Fig. S7a, the belt’s angular speed (output) is
measured using the pulse generator. Further details of this system are available in Wigren et al. (2013). To
model this system, the authors have taken two publicly accessible real data sets (drive-1 and drive-2) from
Wigren et al. (2013). Each drive data carries 500 input/output (I/O) data samples with a sampling period of
20 ms. The authors have used 400 I/O samples for estimation and 100 I/O samples to validate the system. The
I/O data samples of drive-1 and drive-2 are shown in Figs. S7b and S7c, respectively.

(a) (b)

(c)

Fig. S7 Identification results of system 4 (coupled electric drive system) using different models based on
ROA: (a) laboratory setup; (b) drive-1 I/O datasets; (c) drive-2 I/O datasets

15 Basic details of the CSTR system

CSTR exhibits irreversible exothermic reactions. The schematic view of the CSTR system is shown in
Fig. S8a. In CSTR, two chemicals were mixed to generate a product compound ‘A’ at a concentration )(tC A
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and temperature )(tT . The coolant flow-rate )(tqc varies with the temperature, resulting in controlled product
concentration. The differential equations of CSTR outputs are given as follows (De Moor, 2004):

0 0 0( ) ( ) ( ) exp / RT( )( )( ) ( )A A AC t q V C C t K C t EA t    

1 2 3 00( ) ( ) ( ) exp / ( ) 1 exp / ( ) ( )( ) ( )( )( ) ( ) ( )( )c c cAT t q V T T t K C t E R K q t K q t T T tT t       

where q is the process flow rate, 0AC and 0T specify the inlet feed concentration and temperature,

respectively, 0cT is the coolant temperature, and V , RE / , 0K , 1K , 2K , and 3K are the thermochemical
constants.

The numerical values of the above-said CSTR parameters, constants, and normal functionality conditions
are presented in the literature (De Moor, 2004). To model the CSTR using the chosen models, the actual input

)(tqc , and output )(tC A (assume that another output )(tT is constant for a single-input single-output (SISO)
system formation (Lightbody and Irwin, 1997; Hafezi and Arefi, 2019; Janjanam et al., 2022b)), datasets are
collected from the database for identification of systems (DAISY) (De Moor, 2004), where the authors have
picked up the first 1250 samples out of 7500 to reduce CC, which is shown in Fig. S8b. From the total of 1250
samples, the first 1000 samples were allotted for estimation and the rest 250 samples for validation of CSTR.

(a) (b)

Fig. S8 CSTR practical plant identification results using ROA: (a) schematic view of CSTR; (b) input

and output datasets of CSTR
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