Frontiers of Information Technology & Electronic Engineering www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com ISSN 2095-9184 (print); ISSN 2095-9230 (online) E-mail: jzus@zju.edu.cn

Supplementary materials for

Xiaowei LI, Jiongjiong REN, Shaozhen CHEN, 2024. Improved deep learning aided key recovery framework: applications to large-state block ciphers. *Front Inform Technol Electron Eng*, 25(10):1406-1420. https://doi.org/10.1631/FITEE.2300848

Table S1 The algorithm of Gohr's key recovery attack

Require: k neutral bits, neural distinguisher ND Ensure: Candidate key rk

1: Randomly generate plaintext pairs $(P, P + \Gamma)$, and expand the plaintext pairs into 2^k plaintext structures using the k neutral bits of the pre-difference.

2: Encrypt and obtain the corresponding ciphertext structures.

3: Guess rk, for each of possible kg:

4: Decrypt the 2^k ciphertext pairs by one round using kg.

5: Feed pairs into ND, obtain scores Z_j for $j \in [1, 2^k]$.

6: Combine the scores using the following formula $v_{kg} := \sum_{j=1}^{2^k} \log_2\left(\frac{Z_j}{1-Z_j}\right)$.

7: If $v_{kg} > c$, c is the threshold, save kg as a possible candidate key.

8: Return 3 and repeat the process until a candidate key is found.

Block size	Key size	Word size	Key word	Consent sequence	Round	
32	64	16	4	z_0	32	
18	72	24	3	z_0	36	
40	96	24	4	z_1	36	
64	96	32	3	z_2	42	
04	128	32	4	z_3	44	
06	96	48	2	z_2	52	
90	144	48	3	z_3	54	
	128	64	2	z_2	68	
128	192	64	3	z_3	69	
	256	64	4	z_4	72	

Table S2 The parameters of the SIMON family

Algorithm S1 The multi-stage deep learning aided key recovery framework

Require: A section of the key bit set $B_i, i \in [1, x]$; a small constant ϵ ; the thresholds on the scores for
filtering wrong key guesses $c_i, i \in [1, x]$; the upper bound of the number of kept surviving key guesses
$\beta_i, i \in [1, x].$
Ensure: The guessed value kg'_x for rk .
1: for $i \in [1, x]$, do
2: Launch Stage i by choosing $\frac{\epsilon}{p_i}$ plaintext pairs with difference Γ_i . Expand the plaintext pairs into
plaintext structures using the $\log_2 N_i$ neutral bits of CD_i ;
3: for $d = 1$ to $\frac{\epsilon}{p_i}$, do
4: Encrypt and obtain the corresponding ciphertext structures. Note that each ciphertext structure contains N_i ciphertext pairs;
5: Initialize a list $L_i \leftarrow \emptyset$;
6: Denote the β_i top-ranked partial key guesses for bits in $\bigcup_{j \in [1,i-1]} B_j$ that were recommended from
the previous stages by $\overrightarrow{kg}_{i-1} := kg_{i-1} \dots kg_1$ (for Stage1, $\beta_1 = 1$ and $\overrightarrow{kg}_{i-1} = \emptyset$);
7: for $k = 1$ to β_i , do
8: The $2^{ B_i }$ possible value kg_i of the key bits in B_i ;
9: for $h = 1$ to $2^{ B_i }$, do
10: Denote the concatenation $kg_i kg_{i-1} \dots kg_1$ by $\overrightarrow{kg_i}$;
11: Partially decrypt the N_i ciphertext pairs by one round using $\overrightarrow{kg}_{i-1}$ to obtain pairs of values for
state bits in C_i ;
12: Feed N_i partial state pairs into ND_i , obtain N_i scores Z_j for $j \in [1, N_i]$;
13: Combine the scores using the following formula
$v_{\overrightarrow{kg_i}} := \sum_{j=1}^{N_i} \log_2\left(\frac{Z_j}{1-Z_j}\right);$
14: end for
15: if $v_{kg_i} > c_i$, then
16: Store $(\overrightarrow{kg_i}, v_{\overrightarrow{ka_i}})$ in L_i ;
17: end if
18: end for
19: if $L_i \neq \emptyset$, then
20: sort L_i according to the scores of the guessed key bits, and take the β_{i+1} top-ranked values as the
guessed value for the key-bits in $\bigcup_{j \in [1,i]} B_j$. Go to Step 2;
21: end if
22: end for \rightarrow
23: If all $\frac{\epsilon}{p_i}$ ciphertext structures have been used and no values of kg_i obtain a score passing c_i , terminate the attack with output \perp ;
24: end for \rightarrow

25:	Return the concatenated ke	v bits $k\dot{a}$	q_r with the	highest score	e in the last s	stage as the	guessed value for r	k.
			1.1.	0			0	

 $\mathbf{2}$

Algorithm S2 Key bit sensitivity test

Require: A cipher with a word size(round key size) of n; a neural distinguisher ND^t ; a test dataset consisting of $\frac{M}{2}$ positive samples and $\frac{M}{2}$ negative samples.

Ensure: An array sen that saves the bit sensitivity of m ciphertext bits.

1: Test the distinguishing accuracy of ND^t on the test dataset. Save it to sen[m];

2: Generate t + 1-round key ks;

3: Encrypt 1 round test with ks[t], $enc_one_round(C, ks[t])$, denote as C';

4: for j = 0 to n - 1, do

5:
$$ks[t] = ks[t] \wedge 2^{j};$$

- 6: Decrypt 1 round test with ks[t], $dec_one_round(C', ks[t])$, and generate new test dataset denote as C'';
- 7: Test the distinguishing accuracy of ND^t on the new test dataset C'', denote as cp;
- 8: sen[j] = sen[n] cp;

9: end for

10: return sen.

 Table S3
 The parameters of the SPECK family

Block size	Key size	Word size	Key word	(lpha,eta)	Round	
32	64	16	4	(7, 2)	22	
48	72 96	$\frac{24}{24}$	3 4	(8,3) (8,3)	22 23	
64	96 128	32 32	3 4	(8,3) (8,3)	26 27	
96	$\frac{96}{144}$	48 48	2 3	(8,3) (8,3)	28 29	
128	128 192 256	$\begin{array}{c} 64 \\ 64 \\ 64 \end{array}$	2 3 4	(8,3) (8,3) (8,3)	32 33 34	

Table S4 9-round neural distinguisher combination for SPECK128

Chen's 9-round SPECK128						Improved 9-round SPECK128			
ND_i	Δ_i	B_i	C_i	Accuracy	Δ_i	B_i	C_i	Accuracy	
ND_1	$\varDelta_{[64]}$	$\{14\sim 0\}$	$\{22 \sim 18\} \\ \{14 \sim 9\}$	0.559	$\Delta_{[64]}$	$\{14\sim 0\}$	$ \{ 22 \sim 17 \} \\ \{ 14 \sim 9 \} $	0.609	
ND_2	$\Delta_{[76]}$	$\{26\sim 15\}$	${34 \sim 30}$ ${26 \sim 21}$	0.586	$\Delta_{[76]}$	$\{26\sim 15\}$	$\{34 \sim 30\}\$ $\{26 \sim 19\}$	0.624	
ND_3	$\varDelta_{[90]}$	$\{40\sim27\}$	$\{48 \sim 44\}\$ $\{40 \sim 34\}$	0.609	$\Delta_{[90]}$	$\{40 \sim 27\}$	$\{48 \sim 44\}\$ $\{40 \sim 32\}$	0.622	
ND_4	$\Delta_{[105]}$	$\{55 \sim 41\}$	$\{63 \sim 59\}\$ $\{55 \sim 49\}$	0.616	$\Delta_{[105]}$	$\{55 \sim 41\}$	$\{63 \sim 59\}\$ $\{55 \sim 47\}$	0.623	
ND_5	$\Delta_{[117]}$	$\{63\sim 56\}$	$\{11, 7, 4\}\ \{3, 0\}$	0.559	$\Delta_{[117]}$	$\{63\sim 56\}$	$\{63, 62, 11, 8\} \\ \{7, 4 \sim 0\}$	0.644	

Table S5 7-round neural distinguisher combination for SPECK96

Chen's 7-round SPECK96					Improved 7-round SPECK96			
ND_i	Δ_i	B_i	C_i	Accuracy	Δ_i	B_i	C_i	Accuracy
ND_1	$\Delta_{[53]}$	$\{11 \sim 0\}$	$\{19 \sim 8\}$	0.633	$\Delta_{[53]}$	$\{11 \sim 0\}$	$\{19 \sim 8\}$	0.633
ND_2	$\Delta_{[65]}$	$\{23 \sim 12\}$	$\{31 \sim 20\}$	0.621	$\Delta_{[65]}$	$\{23 \sim 12\}$	$\{31 \sim 20\}$	0.621
ND_3	$\Delta_{[77]}$	$\{35 \sim 24\}$	$\{43 \sim 32\}$	0.628	$\Delta_{[77]}$	$\{35 \sim 24\}$	$\{43 \sim 29\}$	0.690
ND_4	$\Delta_{[89]}$	$\{47 \sim 36\}$	$\{47 \sim 44\}\$ $\{7 \sim 0\}$	0.634	$\Delta_{[89]}$	$\{47 \sim 36\}$	$ \{ 47 \sim 44 \} \\ \{ 7 \sim 0 \} $	0.634

				-				
Chen's 6-round SPECK64						Improved 6	-round SPECK64	
ND_i	Δ_i	B_i	C_i	Accuracy	Δ_i	B_i	C_i	Accuracy
ND_1	$\Delta_{[42]}$	$\{9 \sim 0\}$	$\{17 \sim 8\}$	0.613	$\Delta_{[42]}$	$\{9 \sim 0\}$	$\{17 \sim 8\}$	0.613
ND_2	$\Delta_{[47]}$	$\{21 \sim 10\}$	$\{29 \sim 18\}$	0.677	$\Delta_{[47]}$	$\{21 \sim 10\}$	$\{29 \sim 15\}$	0.728
ND_3	$\Delta_{[33]}$	$\{31 \sim 22\}$	$\{31, 30\}\$ $\{7 \sim 0\}$	0.653	$\Delta_{[33]}$	${31 \sim 22}$	$ \{ 31, 30, 14 \} \\ \{ 13, 7 \sim 0 \} $	0.725

Table S6 $\,$ 6-round neural distinguisher combination for SPECK64 $\,$

Fig. S1 The round transformation of SIMON

Fig. S2 The round transformation of SPECK

Fig. S3 The outcomes of KBST on the neural distinguisher for 15-round SIMON128 $\,$

Fig. S4 The schematic of the improved multi-stage key recovery framework for large-state block ciphers. A total of x neural distinguishers ND_i are used, whose input differences are Δ_i , each ND_i is prepended with a CD_i , and CD_i is defined as $\Gamma_i \rightarrow \Delta_i, i \in [1, x]$. Each ND_i is trained on partial state bits C_i , and is used to recover partial key bits $B_i, i \in [1, x]$