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1  Notations 
 

Table S1  Summary of key notations 

Notation Definition Notation Definition 

N Number of UAVs off
,n mt  Offloading time the UAV n  

assigns to user m 

M Number of IoT device users snrw
n  SNR between UAV n and UAV w 

(wm, dm, Dm, 
tm) 

Task information of user m, where wm is user 
m’s coordinates, dm is the amount of data, Dm is 
the DAG of dependent tasks, and tm is the ex-

pected time to receive service 

Dm=(Tm, Em, 
Cm) 

DAG of user m’s dependent tasks, where Tm 
is the set of subtasks, Em is the dependency 

between subtasks and Cm represents the 
computing time of the subtask on UAVs 

ΔT The flight cycle of the UAVs tu,comm Data transfer time between UAVs 

K The number of time slots Tm,i Subtask i of task m 

T Unit time slot length Tpre(m,i) Predecessor subtask of Tm,i 

Q Set of UAV trajectories  X 
UAV–subtask association, which is the set 

of variables χm,i,n 

qn[k] Horizontal coordinates of UAV n in kth time slot χm,i,n 
Indicate whether subtask Tm,i is assigned to 

UAV n  

 
Channel gain between UAV n and user m f [ ]nE k  

Flight energy consumption of UAV n in kth 
time slot  

B Bandwidth resource allocation h
nE  Total hover energy consumption of UAV n 

bn,m[k] Bandwidth ratio of user m allocated by UAV n move
nE  Moving energy consumption of the UAV n 

snr [ ]n
m k  

SNR between the user m and the UAV n in kth 
time slot 

F 
Computational allocation, made up of the 

set of fn[k], which is the computing  
frequency in kth time slot 

 
Data transmission rate c

nE  Computing energy of UAV n 

A UAV–user association, the set of , [ ]m n k  SSC 
Time slot that all the dispatched UAVs have 

completed the task collection 

, [ ]m n k   Whether user m’s task is captured by UAV n in 
the kth time slot 

CFTn 
Time slot that UAV n completes task  

collection 

H Flight altitude of UAVs SFCn 
Time slot that UAV n has completed all the 

assigned subtasks’ computing 

Pm User m’s transmitting power γ Energy consumption coefficient 

Pu The power required for the UAV to transmit data dmin 
Collision avoidance distance between 

UAVs 
 UAV: unmanned aerial vehicle; DAG: directed acyclic graph; SNR: signal-to-noise ratio 
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2  Algorithms 
 

This section shows the algorithms employed in this paper. Algorithm S1 is used to solve problem P1, Algo-
rithm S2is used to solve problem P2, and Algorithm S3 is used to solve problem P.  

 

Algorithm S1  Iterative algorithm for clustering and convex optimization 
1:  Input: the initial value of the UAV–user association An obtained by K-Means++, user information, UAV starting point, 

hovering point, computing energy consumption, and computing time. 
2:  Let the number of iterations j=1; 

3:  while j≤jm do 
4:    for n=1: N 

5:    Initialization: , 
1
nq , rn=1, =0 

6:      while (Obj1(r−1) –Obj1(r))≥ε and  do 

7:        SCA: Obtaining the  by inequalities (5), (6), (23), and (25) and the trajectory
1[ ]r

n kq  by inequality (25); 

8:        Update: , 
1[ ]r

n kq ; 

9:        Update: r=r+1; 
10:     end while 
11:   n=n+1; 
12:   end for 
13:   If |CFTn − CFTw|≤θ 
14:     Update: Obj(j+1)=Obj(j);

 
 

15:   else 

16:     Update: 
1r

nA 
; 

17:   end if 
18:  j=j+1; 
19:  end while 

20:  Output: UAV–user association A, communication resource allocation B and UAV trajectories Q. 

UAV: unmanned aerial vehicle; SCA: successive convex approximation 
 

First, we adopt the K-Means++ algorithm to obtain the initial value of the unmanned aerial vehicle (UAV) 
–user association. Then successive convex approximation (SCA) technology is used to convert the non-convex 

constraints into convex constraints. The convex optimization toolbox (CVX) solver is used to iteratively solve 
the UAV trajectory and communication resource allocation, and the solution set of UAV trajectory, and com-
munication resource allocation is obtained. Next, according to the judgment condition of the completion time of 
the UAVs collection, the solutions with the expected mutual waiting time are screened out. If there is no solu-
tion, the K-Means++ algorithm is invoked again to update the UAV–user association and start the next iteration. 
 

 

Algorithm S2 Improved GA 
1:  Input: DAG, UAV hovering position, parameters of the UAVs, population size, number of populations, maximum number of 
iterations max_iter;  
2:  Initialization: i=0, populations Pop(i); 
3:  Encoding: Subtasks, UAVs associated with the subtasks, and the computational frequency of UAVs are encoded to obtain the 
initial solution set Pops(i); 
4:  Substituting Pops(i) into the objective function, obtaining the fitness of the candidate solution Xbest, the optimal solution Fbest 
and the optimal objective function value Emax; 
5:  while i<max_iter 
6:    Regeneration, crossover, mutation to produce new populations Pops(i+1); 

1
nB 1

nE
0r

n nE E
, [ ]n r

mB k
, 1[ ]n r

mB k



 

 
3

7:    Calculate the fitness of the Pops(i+1), update the optimal solution Xbest, Fbest, and the objective function value Emax; 
8:    i=i+1; 
9:  end while 
10:  Output: Optimal value Emax and optimal solution Xbest, Fbest. 

UAV: unmanned aerial vehicle; DAG: directed acyclic graph 

 
For the coding part, we first index each subtask according to the directed acyclic graph (DAG). 

Considering the diversity of variables, we adopt a multi-digit encoding method. Therefore, the chromosome is 
composed mainly of four parts: the subtask index, the UAV to which the subtask is assigned, the time slot at 
which the task begins to perform, and the computing frequency assigned to that subtask.  

Since the initial solution greatly influences the result of the genetic algorithm, we focus on the selection of 
the initial population. Considering that the UAVs at this stage are in a hovering state, the longer the hovering 
time, the more the increased cost. Therefore, without considering the energy balance, the solution with the 
shortest overall time is taken as the initial solution of the genetic algorithm (GA) proposed in this paper, and the 
corresponding population is taken as the initial population. Due to the dependency of subtasks (Hu ZZ et al., 
2021), we adopt the priority to determine the assignment order of each subtask, which is determined mainly by 
the computing time and communication time, as shown in Eq. (S1). 

 
, ,

,
, pre( , )

1

1
Pri ( , ) max{ ( , ) Pri }, when , ,

m i m j
m j

N

T m m T m i m i
T

n

C i n e i j T T m n
N 

    
 (S1) 

Each subtask is ranked in descending order according to the priority calculated by this method, and the 
subtasks are selected from highest to lowest, and the most appropriate associated UAV is selected based on the 
principle of minimum idle time. The algorithm complexity here is O(NM2).  

Since we want to find a task allocation method under an energy consumption constraint, and the traditional 
GA is used to solve the maximum value, we use the inverse of the objective function as the fitness evaluation 
function. We adopt the classic roulette to pick out the paternal chromosomes from the current population, and 
the fitter individuals have a better chance of being selected. Then, the selected parents are randomly paired to 
imitate the process of deoxyribonucleic acid (DNA) replication, and the matched parents are cross-operated to 
exchange part of the genetic information with a crossover probability of 0.75 to obtain a new population. We 
also set the genes on each chromosome to change randomly with a mutation probability of 0.05. The genetic 
characteristics of the new population will be better than those of the previous generation, so the larger the value 
of the feasible solution function of the new population, the closer we are to the optimal solution. After a round of 
evolution is completed, we recalculate the fitness of each chromosome in the new population and update the 
current solution if the fitness of the new population is greater than the current one.  

 
 

Algorithm S3 Iterative optimization based energy balancing algorithm for mobile edge computing in UAVs 
1:  Input: System parameter. 
2:  Initiate: Ar, Xr, Or, Qr, Br, Fr, the value of the objective function Obj(r), the maximum number of iterations max_iter, and the 
number of iterations r=1; 
3:  When r<max_iter, perform steps 4–7; otherwise, output the results; 
4:  Given Xr and Fr, obtain Ar+1, Br+1, Qr+1 by solving problem P1; 
5:  Given Ar+1, Br+1, Qr+1, obtain Xr+1 and Fr+1 by solving problem P2; 
6:  Calculate Obj(r+1) corresponding Ar+1, Xr+1, Qr+1, Br+1, Fr+1, and make r=r+1; 
7:  if |Obj(r+1) – Obj(r)|≤ξ, end the loop and output the result; otherwise, return to step 3; 
8:  Output: Optimal objective function values and corresponding solutions. 

UAV: unmanned aerial vehicle 

 
In Algorithm S1, we adopt the K-Means++ algorithm to solve the UAV–user association, the complexity of 

which is O(logN). Then we adopt SCA to obtain the UAVs’ trajectories and communication resource allocation. 
The complexity of this algorithm is related to the size of the problem. In the worst case the complexity is 



 4

, where L is the number of iterations, so the complexity of Algorithm S1 is

. In Algorithm S2, the computational complexity of the improved GA comes from 

population initialization, selection, crossover, variation, and fitness evaluation operations. After calculation, the 
overall complexity is about O(GNM2), where G is the number of generations. Therefore, the algorithm 

complexity of Algorithm S3 does not exceed , where I is the number 

of iterations of Algorithm S3. 
 

3  Simulation setting and results 
 

The imulation parameters are shown in Table S1. 
Table S2  Simulation parameter settings 

Parameter Value 

Maximum computing frequency of UAV 1 GHz 

CPU capacitance coefficient κ 10−28 

CPU cycle Ck 1000 

Max bandwidth resources B 1 MHz 

Channel power gain −50 dB 

Noise power density −100 dBm 

Path loss index 𝛼 2 

Energy consumption coefficient γ 10−4 

Maximum flying speed Vmax 30 m/s 

Flight altitude H 50 m 
UAV: Unmanned aerial vehicle; CPU: central processing unit 

 
 

To make the experiments more comprehensive, we incorporate the variations in the moving and computing 
energy consumption of the UAV, task collecting and task computing time as the number of users increases. The 

performance of the different algorithms is shown in Figures S1–S4. 

 

Fig. S1  Moving energy consumption of a UAV as the number of users increases 
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Fig. S2  Computing energy consumption of a UAV as the number of users increases 
 

 

Fig. S3  Collecting time consumption of a UAV as the number of users increases 
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Fig. S4  Computing time consumption of a UAV as the number of users increases 
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