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Abstract: We propose a distributed labeled multi-Bernoulli (LMB) filter based on an efficient label matching
method. Conventional distributed LMB filter fusion has the premise that the labels among local densities have
already been matched. However, considering that the label space of each local posterior is independent, such a
premise is not practical in many applications. To achieve distributed fusion practically, we propose an efficient label
matching method derived from the divergence of arithmetic average (AA) mechanism, and subsequently label-wise
LMB filter fusion is performed according to the matching results. Compared with existing label matching methods,
this proposed method shows higher performance, especially in low detection probability scenarios. Moreover, to
guarantee the consistency and completeness of the fusion outcome, the overall fusion procedure is designed into the
following four stages: pre-fusion, label determination, posterior complement, and uniqueness check. The performance
of the proposed label matching distributed LMB filter fusion is demonstrated in a challenging nonlinear bearings-only
multi-target tracking (MTT) scenario.

Key words: Distributed multi-sensor multi-target tracking; Labeled multi-Bernoulli filter; Arithmetic average
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1 Introduction

Multi-target tracking (MTT) refers to jointly
estimating the time-varying number and states of
targets in noisy and cluttered tracking scenarios (Vo
BN et al., 2014). However, even though MTT has a
wide range of prospects in civilian and military appli-
cations (Hoseinnezhad et al., 2013; Katsilieris et al.,
2015; Cai et al., 2019; Nguyen et al., 2021), it still
faces numerous complex and intrinsic challenges due
to the ubiquitous noisy measurements, missed detec-
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tions, and unknown target-measurement matching.

As a promising approach first introduced by
Mahler R (2007b), the random finite set (RFS) pro-
vides a unified framework for MTT and achieves
mathematical consistency in Bayesian filtering algo-
rithms. Tractable and approximate solutions have
been proposed, including the probability hypoth-
esis density (PHD) filter (Vo BN and Ma, 2006;
Daniyan et al., 2017), the cardinalized probability
hypothesis density (CPHD) filter (Mahler R, 2007a;
Vo BT et al., 2007), the cardinality-balanced multi-
target multi-Bernoulli (CBMeMBer) filter (Vo BT
et al., 2009), and the Poisson multi-Bernoulli mix-
ture (PMBM) filter (Garcia-Fernandez et al., 2018).

However, the RFS filters illustrated above are
not real multi-target trackers since they just output
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target’s estimated states, rather than the consecu-
tive target trajectories. To overcome such deficiency,
the labeled random finite set (LRFS) has been pro-
posed (Vo BT and Vo, 2013), which allows target
states to be augmented with corresponding identi-
ties. Based on LRFS, the generalized labeled multi-
Bernoulli (GLMB) filter has been developed (Vo BT
and Vo, 2013) which propagates GLMB densities ac-
cording to the rigorous multi-target Bayesian recur-
sion in a closed form. Considering the computational
efficiency, the marginalized δ-GLMB (Mδ-GLMB)
filter (Fantacci et al., 2016) and the labeled multi-
Bernoulli (LMB) filter (Reuter et al., 2014) have been
proposed. Moreover, to improve robustness and scal-
ability, the distributed LRFS MTT has been widely
studied.

The two most popular distributed fusion meth-
ods are log-linear generalized covariance intersec-
tion (GCI) and linear arithmetic average (AA).
The weighted average Kullback–Leibler divergence
(KLD) derived from local densities to fusion outcome
can be minimized by the GCI fusion. A closed-form
distributed GCI fusion of LRFS densities has been
proposed based on the assumption that all local den-
sities share the same labels (Fantacci et al., 2016).
Relatively, the weighted average KLD derived from
the fusion outcome to local densities can be mini-
mized resorting to AA fusion, which guarantees the
minimum information loss (MIL) (Gao et al., 2020b).
AA fusion of PHD and multi-Bernoulli (MB) densi-
ties has been proposed by Li TC et al. (2020) and
Li TC and Hlawatsch (2021). Considering its com-
putational efficiency, AA fusion of PHD filters has
been applied to distributed MTT in a sensor net-
work with different fields of view (Li TC et al., 2019;
Yi et al., 2020). For LRFS densities, AA fusion has
been derived from MIL (Gao et al., 2020a). More-
over, a unified framework of AA fusion without sta-
tistical approximation has been proposed for the first
time, which derives the proper AA fusion of different
LRFS/RFS filters based on the unified LPHD/PHD-
AA framework (Li TC, 2024).

Different from RFS, label matching shows
paramount importance in the fusion of LRFS den-
sities. Assuming that the identical label space is
shared among sensor nodes and that the same la-
bel in different sensor nodes represents the same ob-
ject, GCI fusion of LRFS densities has been devel-
oped (Fantacci et al., 2016). However, in practical

tracking scenarios, sensor nodes are not necessarily
sharing the identical label space, which is called la-
bel inconsistency. The fusion performance is highly
affected by the label inconsistency, whose negative
implications on LRFS densities have been analyzed
theoretically (Li SQ et al., 2018). Since labels re-
ferring to different objects may be fused, this direct
label-wise fusion of LRFS posteriors would give rise
to a deteriorated result. To overcome such deficiency,
a solution proposed by Li SQ et al. (2018) amounts
to assigning labels to the unlabeled version of fused
posteriors. Despite being able to guarantee the la-
bel consistency among different sensor nodes, this
approach demands many computational resources.

A label matching GCI (LM-GCI) method, which
minimizes the label inconsistency indicator derived
from the GCI criterion, has been proposed by Li
SQ et al. (2019). A lookup table to assign labels
from different sensor nodes has been proposed by
Shen et al. (2022). It has been proved that the
LRFS density fusion can be resolved into two sub-
problems: label matching and density fusion (Gao
et al., 2020a). Based on the label matching pro-
posed by Li SQ et al. (2019), a slight improvement
using Jensen–Shannon divergence (JSD) has been
proposed to adapt to low detection probability sce-
narios (Gao et al., 2020a). The aforementioned label
matching methods, however, rely on the matching
cost function derived from the GCI fusion criterion.
Due to the intrinsic multiplicative property of GCI
fusion, it is essential to calculate the fractional power
of the multi-object probability densities. This pro-
cess suffers from higher computational complexity
compared to the AA fusion. Furthermore, inheriting
the limitations of GCI fusion, the accuracy of such
label matching methods would significantly decrease
when the sensor nodes are equipped with poor detec-
tion capability. Although an improvement has been
proposed by Gao et al. (2020a), extra computational
resources are still required.

In this paper, a distributed LMB filter based
on efficient label matching is proposed. The main
contributions are summarized as follows:

1. AA divergence is proposed from the perspec-
tive of AA fusion criterion, which reveals the discrep-
ancy among local posteriors.

2. Considering different label matching, the pro-
posed AA divergence is generalized to LRFS densi-
ties, and a label matching method for LMB densities
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is derived. Compared with existing label matching
methods, this proposed method shows higher perfor-
mance in matching accuracy and computational effi-
ciency, especially in low detection probability track-
ing scenarios.

3. To guarantee the consistency and complete-
ness, the overall fusion procedure is designed into
four stages, which not only achieves efficient label
matching but also further ensures qualified fusion
results.

2 Background

In this section, background knowledge of LRFS
and distributed MTT is introduced, which is essen-
tial to this paper.

2.1 LRFS

An RFS is an element ofF (X). F (X) represents
all finite subsets of state space X. It is worth noting
that RFS is not in accordance with the Euclidian no-
tion of integration and differential calculus. Accord-
ingly, finite set statistics (FISST) supplies powerful
and effective mathematical techniques to character-
ize RFS (Mahler RPS, 2003).

An RFS with distinct labels augmented to its
state elements is called an LRFS X (Vo BT and Vo,
2013; Kropfreiter et al., 2020). Moreover, the labeled
state space X is the product of the kinematic state
space X and the discrete label space L, i.e., X × L.
Let f : X × L → R be a function whose input is
an LRFS and output is a real-valued number. Let
L : X × L → L denote the label projection, i.e.,
L ((x, �)) = �. An MTT example resorting to LRFS
is illustrated in Fig. 1, where not only target states
but also different tracks have been extracted.

Hereafter, the standard inner product is repre-
sented as follows:

〈h, k〉 �
∫
h (x) k (x) dx. (1)

The exponential function of an RFS is repre-
sented as follows:

fX �
∏

x∈X
f (x) , (2)

where f : X → R, and fX = 1 when the set X is
empty.

The definitions of the generalized Kronecker
delta function δY (X) and the generalized inclusion
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Fig. 1 A label assignment example for three different
tracks where target states are represented by black
dots and different tracks are represented by labels

function 1Y (X) can be found in Vo BT and Vo
(2013). Moreover, the integration of function q de-
fined on X× L is denoted as follows:∫

q (X) δX =
∑
�∈L

∫
q (x, �) dx. (3)

For an LRFS, a tractable approximation was
proposed by Papi et al. (2015). Considering an LRFS
π on F (X× L) and Ln = {�1, �2, ..., �n}, the label set
joint existence probability is represented as follows:

h (Ln)

�
∫
. . .

∫
π({(x1, �1), (x2, �2), ..., (xn, �n)})dx1dx2...dxn,

(4)
and the joint probability density function of states is
represented as follows:

g
({(

x1, �1
)
,
(
x2, �2

)
, ...,

(
xn, �n

)})

�
π
({(

x1, �1
)
,
(
x2, �2

)
, ...,

(
xn, �n

)})

h
({
�1, �2, ..., �n

}) .
(5)

As a consequence, the density of an LRFS Xn

can be generally described as the product of the joint
existence probability and the joint probability den-
sity function as follows:

π
(
Xn

)
= h

(
Ln

)
g
(
Xn

)
. (6)

LMB is an important class of LRFS. For an
LMB with parameter

{(
r(�), p(�)

)}
�∈L

, the label set
joint existence probability and the joint probability
density function can be expressed as follows:

h (Ln) =
∏
�∈L

(
1− r(�)

) ∏
�′∈Ln

r(�
′)

1− r(�′)
, (7)
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g (Xn) =
∏
�∈Ln

p(�)(x), (8)

where r(�) denotes the existence probability and
p(�) = p(�)(x) denotes the probability distribution.

2.2 LMB filter

LMB filter is established based on the multi-
target Bayesian recursion (Fantacci et al., 2016).
The label space is constructed in a recursive man-
ner, which is represented as follows:

L0:k = L0:k−1 ∪ LN(k), (9)

where L0:k−1 represents the label space at time k −
1 and LN(k) represents the label space of newborn
targets at time k . It is worth noting that LN(k) and
L0:k−1 are mutually exclusive.

The prediction step illustrates target dynamics,
birth and disappearance. At time k , an LMB RFS
modeling the birth targets is represented as follows:

πB =
{(
r
(�)
B , p

(�)
B

)}
�∈LN(k)

. (10)

At time k–1, the LMB posterior is represented
as follows:

πk−1 =
{(
r
(�)
k−1, p

(�)
k−1

)}
�∈L0:k−1

. (11)

At time k , the predicted density is also an LMB,
denoted as follows:

πk+ =
{(
r
(�)
k+, p

(�)
k+

)}
�∈L0:k

=
{(
r
(�)
S,k+, p

(�)
S,k+

)}
�∈L0:k−1

∪
{(
r
(�)
B , p

(�)
B

)}
�∈LN(k)

,

(12)

where
r
(�)
S,k+ = hS(�)r

(�)
k−1, (13)

p
(�)
S,k+ =

〈pS (·, �) f (x | ·, �) , pk−1 (·, �)〉
hS (�)

, (14)

hS (�) = 〈pS (·, �) , pk−1 (·, �)〉 , (15)

pS(·, �) is the survival probability of the state,
f (x|·, �) is the state transition function, and hS (�) is
the survival probability of track �.

According to the multi-target Bayesian recur-
sion, measurements are considered for the update
step. The measurements are composed of target
detections with noise and false alarms (clutter) il-
lustrated by a Poisson RFS. Measurements can be

generated with the detection probability pD(x). The
existence probability and probability density of track
� are given as follows:

r
(�)
k =

∑
(I,θ)∈F(L)×Θ

ω(I,θ)(Z)1I (�) , (16)

p
(�)
k (x) =

1

r
(�)
k

∑
(I,θ)∈F(L)×Θ

ω(I,θ) (Z) 1I (�) p
(θ) (x, �) ,

(17)
where

ω(I,θ)(Z) ∝ ω
(I)
k+

[
hθZ

]I
, (18)

p(θ) (x, �) =
pk+ (x, �)ψz (x, �; θ)

h
(θ)
z (�)

, (19)

h(θ)z (�) = 〈pk+ (·, �) , ψz (x, �; θ)〉 , (20)

ψz (x, �; θ)

=

{
g
(
zθ(�) | x, �

)
pD (x) /k

(
zθ(�)

)
, if θ(�) > 0,

1− pD (x) , if θ(�) = 0,

(21)
Θ represents the space of mappings between mea-
surements and tracks, and θ : I → {0, 1, . . . , |Z|} is
an element of Θ, such that θ (�) = θ (�′) > 0 means
� = �′. The pair (I, θ) ∈ F (L) × Θ denotes a po-
tential hypothesis, the weight ω(I,θ) denotes this hy-
pothesis probability, and p(θ) (x, �) denotes the pos-
terior when the track mapping is θ.

2.3 Distributed sensor network

The distributed sensor network illustrated in
this paper is schematized in Fig. 2. Several sensor
nodes, with capabilities of detection, computation,
and communication, are dispersed in the network
(Yang CQ et al., 2023). Resorting to the mathemat-
ical description of the graph, this network is modeled
by R= (N , C), where N represents the sensor node
set and C represents the set of communication routes,
i.e., C ⊆ N ×N . The number of sensor nodes is de-
scribed as |N |, and N (j) � {i : (i, j) ∈ C} denotes
the nodes connected with node i (including node i
itself) (Battistelli et al., 2013).

3 AA LMB fusion

In this section, we propose AA divergence and
introduce AA LMB density fusion in MTT.
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Sensor node 1
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Sensor node 2

Sensor node 6
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Sensor node 4

Sensor node 3

Communication

Fig. 2 Schematic of the sensor network

3.1 AA fusion and AA divergence

Local multi-target RFS probability densities
with fusion weights can be represented as follows:

Ξ = {(πi(X), ωi)}i∈N , (22)

where ωi > 0 and
∑

i∈N ωi = 1.
AA fusion can be obtained as the minimum of

KLD average, which is given as follows:

πAA = argmin
π

∑
i∈N

ωiDKL (πi‖π) , (23)

where DKL(·‖·) represents the KLD between two
probability densities.

Then, AA fusion is given as follows:

πAA (X) �
∑
i∈N

ωiπi (X) . (24)

To measure the discrepancy among local multi-
target densities, we introduce AA divergence to de-
pict the information loss of AA fusion with local
densities.

The MIL from an RFS density π to densities in
Ξ is defined as follows (Gao et al., 2020a):

DMIL (Ξ ‖ π) �
∑
i∈N

ωiDKL (πi ‖ π) . (25)

AA fusion minimizes the weighted average infor-
mation loss according to Eq. (23), and the resulting
minimal MIL is given as follows (Gao et al., 2020a;
Yang F et al., 2022):

min
π
DMIL (Ξ ‖ π) =

∑
i∈N

ωiDKL (πi ‖ πAA) . (26)

In this paper, we refer to the MIL given by
Eq. (26) as AA divergence, denoted by G (Ξ) as
follows:

G (Ξ) =
∑
i∈N

ωiDKL

⎛
⎝πi ‖ ∑

j∈N
ωjπj

⎞
⎠ . (27)

AA divergence can be measured to quantify the
consistency among multiple densities. A minimal
AA fusion divergence among densities in Ξ often
indicates that the fusion adheres to the principle
of minimum discrimination of information gracefully
(Battistelli and Chisci, 2014), and therefore the fu-
sion result guarantees a satisfactory consistency with
respect to local densities.
Remark 1 Both AA and GCI fusions can deal with
the double-counting phenomenon. Nevertheless, the
product of local densities needs to be calculated in
GCI fusion. When local densities are not qualified
enough due to some sensor failures or low detection
probabilities in the sensor network, the performance
of GCI fusion degrades significantly. In particular,
this may also be degenerated with the expansion of
sensor networks. On the contrary, better tracking
performance of AA fusion can be guaranteed under
such circumstances.

3.2 AA fusion of LMB densities

Assuming that labels among sensor nodes have
been matched, AA fusion of LMB densities has been
achieved from two aspects (Gao et al., 2020a; Li TC,
2024). By restricting the form of the fusion out-
come, a closed-form AA fusion result was derived
(Gao et al., 2020a). Moreover, a unified framework
of both RFS and LRFS density AA fusions was re-
cently proposed based on PHD consistency (Li TC,
2024):

r(�) =
∑
k∈N

ωkr
(�)
k , (28)

p(�) =
∑
k∈N

ω̂
(�)
k p

(�)
k , (29)

where

ω̂
(�)
k =

ωkr
(�)
k∑

i∈N ωir
(�)
i

. (30)

Remark 2 The prerequisite of the above LMB AA
fusion is that labels among sensor nodes are exactly
the same and have already been matched. As men-
tioned before, such prerequisite is impractical. Label
matching will be investigated in Section 4.

4 AA fusion with efficient AA label
matching

In Section 3, we have revealed AA fusion of LMB
densities. However, as indicated in Eqs. (28) and
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(29), this fusion procedure is label-wise. Considering
that label inconsistency is ubiquitous and may
degenerate the fusion results severely, therefore, la-
bel matching is a prerequisite for LMB fusion (Li
SQ et al., 2018). In this section, we propose an AA
fusion method with efficient label matching, which is
based on the proposed AA divergence illustrated in
Section 3.

4.1 Label matching description

Definition 1 Label matching is defined as a
mapping function τ : La → Lb, where La is the label
space of node a and Lb is the space of node b. The
matching space is denoted as T (La,Lb). For any
label � of node a, i.e., � ∈ La, τ (�) denotes the image
of � and τ (�) ∈ Lb.

Label matching τ connects potential identical
targets between different sensor nodes. The subse-
quent fusion process will perform according to the
matching results, and only correct matching is able
to guarantee the qualified fusion estimates.

We assume one of the sensor nodes as the ref-
erence node, whose label space is denoted as Lref .
τk : Lk → Lref represents a matching between labels
of node k and the reference node, and τk (�) = �′

denotes that labels � and �′ are matched.

πi is defined as the LRFS density of node i. Via
label matching τi, its label space is matched with
the reference node. Consequently, the global label
matching of all sensor nodes is represented as follows:

τ =
(
τ1, τ2, . . . , τ|N |

)
. (31)

For local LRFS densities Ξ =

{(πi(X), ωi)}i∈N , a generalized AA fusion with
label matching can be expressed as follows:

(πAA, τ
∗) = arg min

(π,τ)

∑
i∈N

ωiD
(τi)
KL (πi‖π) , (32)

whereD(τi)
KL (πi‖π) is the KLD of πi and π when label

matching is τi. τ∗ is the optimal label matching.

Label matching is required for LRFS densities.
As a result, it is introduced as an argument in the
KLD of LRFS densities. Moreover, as illustrated in
Gao et al. (2020a), label matching can be considered
as an independent subproblem and is represented as

an optimization of the generalized AA divergence:

τ∗ = argmin
τ
G (Ξ)

= argmin
τ

∑
i∈N

ωiD
(τi)
KL

⎛
⎝πi‖ ∑

j∈N
ωjπj

⎞
⎠ .

(33)

Remark 3 Eq. (33) is an optimization problem
and can be illustrated as follows: cost is incurred
when a sensor node’s labels are matched with labels
of other nodes. The purpose is to minimize the total
cost by matching all labels of one node precisely with
other nodes’ labels.

4.2 Label matching for LMB densities

In the previous subsection, we have established
the label matching problem and transformed it into
an optimization issue. However, as multiple sensor
nodes are considered, the optimization of Eq. (33)
is a high-dimensional non-deterministic polynomial
hard (NP-hard) puzzle, which is complicated to
solve. We investigate an efficient solution to this
problem.

To reduce the above optimization problem’s di-
mension, the NP-hard problem can be simplified us-
ing a pair-wise realization (Li SQ et al., 2019). It can
achieve a compromise between accuracy and compu-
tation efficiency, although it is suboptimal.

Without loss of generality, we take the LMB
density fusion from sensor nodes a and b into consid-
eration. The densities combined with fusion weights
can be represented as {(ωa, πa) , (ωb, πb)}. It can be
readily extended to the fusion of more nodes by the
pair-wise strategy.
Proposition 1 If πa and πb are two LMB densi-
ties parameterized by πa =

{(
r
(�)
a , p

(�)
a

)}
�∈La

and

πb =
{(
r
(�′)
b , p

(�′)
b

)}
�′∈Lb

, the cardinalities of La

and Lb are identical, i.e., |La| = |Lb|, and the label
matching between La and Lb is τ , then the matching
cost function can be derived as follows:

J (τ) =
∑
�∈La

G (�, τ(�)) , (34)

where

G (�, τ (�))

=ωa

(
DKL

(
r(�)a ‖ r(�)

)
+ r(�)a DKL

(
p(�)a ‖ p(�)

))

+ ωb

(
DKL

(
r
(τ(�))
b ‖r(�)

)
+r

(τ(�))
b DKL

(
p
(τ(�))
b ‖p(�)

))
,

(35)
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r(�) = ωar
(�)
a + ωbr

(τ(�))
b , (36)

p(�) = ω̂(�)
a p(�)a + ω̂

(τ(�))
b p

(τ(�))
b , (37)

ω̂(�)
a =

ωar
(�)
a

ωar
(�)
a + ωbr

(τ(�))
b

, (38)

ω̂
(τ(�))
b =

ωbr
(τ(�))
b

ωar
(�)
a + ωbr

(τ(�))
b

, (39)

ωa and ωb are fusion weights, and
∑

i=a,b ωi = 1.
The proof of Proposition 1 is provided in the

supplementary materials.
The following example illustrates the calcula-

tion of LMB AA divergence (matching cost) corre-
sponding to different label matching solutions.
Example 1 Supposing that πa and πb are
two LMB densities, both of which have two la-
beled Bernoulli components, the parameterized rep-
resentations are πa =

{(
r
(�)
a , p

(�)
a

)}
�∈La⊂L

, La =
{
�1a, �

2
a

}
, πb =

{(
r
(�)
b , p

(�)
b

)}
�∈Lb⊂L

,Lb =
{
�1b , �

2
b

}
,

where

r
(�1a)
a = 0.9, p

(�1a)
a = N (x; 100, 25) ,

r
(�2a)
a = 0.9, p

(�2a)
a = N (x; 60, 9) ,

r
(�1b)
b = 0.8, p

(�1b)
b = N (x; 102, 36) ,

r
(�2b)
b = 0.6, p

(�2b)
b = N (x; 58, 16) .

Intuitively, �1a should be matched with �1b , and
�2a should be matched with �2b . This will be further
explained below by AA divergence.

Without loss of generality, πa is selected as the
reference density. There are two label matching so-
lutions: τI and τII. τI is denoted as follows:

τI =

{
�1a ↔ �1b ,

�2a ↔ �2b ,

and τII is denoted as follows:

τII =

{
�1a ↔ �2b,

�2a ↔ �1b.

The local densities and different fusion results
are illustrated in Fig. 3.

Resorting to Proposition 1, when label matching
is τI, the AA divergence is 0.1407, and when label
matching is τII, the AA divergence is 30.6786. It

Fusion result of τ
Ⅰ

Fusion result of τ
Ⅱ

Local density x

r p (x)

60

1 2 1 2

100

a a b b L

R

Fig. 3 Different label matching results

can be concluded that for LRFS densities, the AA
divergence can be minimized when the optimal and
reasonable label matching is adopted. Therefore, by
minimizing the AA divergence of LRFS, the most
reasonable label matching can be derived.

The cost of all label matching equals the sum
of matching costs of each label in Proposition 1.
Moreover, each label matching is irrelevant to the
matching for other labels. Such a problem is illus-
trated as linear assignment. Based on these proper-
ties, the reasonable label matching solution and the
minimum matching cost in Proposition 1 can be de-
rived by using the Hungarian algorithm (Shopov and
Markova, 2021) or the Jonker–Volgenant algorithm
(Hamzehi et al., 2019) in polynomial computational
complexity.
Remark 4 Note that the two LMB densities in
Proposition 1 are defined in different label spaces,
and the label matching is considered in the derivation
of the cost function J(τ). For ease of derivation,
the cardinalities of the two label spaces are assumed
to be identical. Moreover, in Section 4.3, further
research will be conducted when the cardinalities are
different.
Remark 5 It can be seen that the KLD needs to be
calculated in Eq. (35). The KLD for Gaussian distri-
butions has an analytical expression. However, for
Gaussian mixture (GM) models, KLD is not analyti-
cally tractable. Several efficient methods for approx-
imating KLD between GMM have been proposed.
We kindly ask readers to refer to Hershey and Olsen
(2007) and Cui and Datcu (2015) for details.

Eventually, we denote “AA fusion” with the pro-
posed efficient “AA label matching” as the AAF-
AALM method. The procedure of AALM between
sensor nodes a and b is illustrated in Algorithm 1.
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Algorithm 1 AALM of LMB posteriors
1: Input: LMB posteriors parameterized by

πa =
{(

r
(�)
a , p

(�)
a

)}
�∈La

, πb =
{(

r
(�′)
b , p

(�′)
b

)}
�′∈Lb

2: Output: the optimal matching result τ∗, and the
unmatched components πN

a , πN
b

3: Function AA_Label_Matching(πa, πb)

4: La = |La| , Lb = |Lb| , Cmax, πN
a = ∅, πN

b = ∅

5: Define an La × Lb cost matrix G

6: for � ∈ La do
7: for �′ ∈ Lb do
8: calculate the fused existence probability r:

r = ωar
(�)
a + ωbr

(�′)
b

9: ω̃
(�)
a = ωar

(�)
a /r, ω̃

(�′)
b = ωbr

(�′)
b /r

10: calculate the fused distribution p:
p = ω̃

(�)
a p

(�)
a + ω̃

(�′)
b p

(�′)
b

11: calculate G (�, �′) according to Eq. (35)
12: end
13: end
14: τ∗ = optimal_linear_assignment(G)

15: for � ∈ La do
16: if C (�, τ (�)) > Cmax

17: πN
a = πN

a ∪ π
(�)
a , πN

b = πN
b ∪ π

(τ(�))
b

18: remove matching (�, τ (�)) from τ∗

19: end
20: end
21: return τ∗, πN

a , πN
b

4.3 Fusion process with label matching

In the first two subsections, resorting to the
proposed AA divergence, we have studied the im-
plementation of converting the LMB label matching
to a linear matching problem. In this subsection,
further detailed fusion procedures with the proposed
AA label matching method are illustrated.

To improve the computational efficiency, the
local LMB posteriors can be pruned. The label
matching threshold T is selected, and then only the
Bernoulli component whose existence probability is
greater than T will participate in the matching. We
refer to these as “posteriors to be matched,” denoted
as πM

s (s ∈ N ):

πM
s =

{(
r(�)s , p(�)s

)
: r(�)s > T

}
�∈Ls

, (40)

L
M
s =

{
�is : r

i
s > T, s ∈ N

}
. (41)

Accordingly, the “posteriors not to be matched”
are denoted as πNM

s (s ∈ N ):

πNM
s = πs \ πM

s , (42)

L
NM
s = Ls \ LM

s . (43)

For the sake of convenience, we consider sensors
a and b as examples. It is worth noting that as
described in Section 4.2, we can further extend the
fusion process to more sensor nodes by using a pair-
wise realization method.

All the blue lines, depicted in Fig. 4, represent
the optimal matching τ̃∗ of labels to be matched
in subspaces L

M
a and L

M
b . It can be observed that

the label indices corresponding to the subspaces LM
a

and L
M
b are not consistent with indices in the origi-

nal spaces La and Lb. Therefore, it is necessary to
convert the optimal matching τ̃∗, according to the
classification result in Eqs. (40)–(43), back into the
original spaces, i.e.,

τ̃∗ → τ∗, (44)

where τ∗ is the optimal matching in original spaces.

1

1

�a

2�a

3�a

4�a

�b

2�b

3�b

4�b

5�bLa

LaM

Lb

LbM

Fig. 4 A label matching example (References to color
refer to the online version of this figure)

Furthermore, to preserve the integrality of the
multi-target posterior, the labels not involved in
matching are added to the final fusion result.

After matching the labels, fusion can be carried
out according to AA fusion, as shown in Eqs. (28)
and (29). In this paper, fusion is divided into the fol-
lowing four stages: pre-fusion, label determination,
posterior complement, and uniqueness check.

In the pre-fusion stage, only the probability den-
sities and the existence probabilities are fused ac-
cording to the matching results. For instance, in GM
implementation, the parameters of the fused proba-
bility density including the weight, mean, and co-
variance are determined at first. It is important to
note that, to further improve the computational effi-
ciency, at the end of this stage, pruning and merging
of Gaussian components can be used.

In the label determination stage, since the
Bernoulli components participating in matching
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have their original labels, it is necessary to determine
the finally fused posterior labels. In this stage, the
fused label is determined by comparing the existence
probabilities, which is given as follows:

�if =

⎧⎨
⎩
�ia, if

∑|LM
a |

i=1 ria >
∑|LM

b |
i=1 rib,

τ
(
�ia
)
, otherwise,

(45)

where �if denotes the fused label.
In the posterior complement stage, the labeled

Bernoulli components in the local posterior that do
not participate in label matching are augmented to
the fusion result. For example, in Fig. 4, labels �4a, �1b ,
and �5b need to be appended into the fused posteriors.

Finally, the labels of the fused posterior ob-
tained by the above procedures may be duplicated,
so uniqueness check is required to ensure that the
labels in the fusion posterior are unique.

The fusion procedures are illustrated in Algo-
rithm 2.

5 Simulation results

This section carries out simulations to illus-
trate the performance of the proposed AAF-AALM.
The GM model is used to represent the probability
densities.

The state of the target is modeled as
x (t) = [px (t) , ex (t) , py (t) , ey (t)]

T at time t,
where [px (t) , py (t)]

T denotes the position and
[ex (t) , ey (t)]

T denotes the velocity in the two-
dimensional coordinate system.

The dynamic model is illustrated by the nearly
constant velocity (NCV) model, whose discretized
form is described as follows:

xk+1 = Fxk +Gηk, (46)

where F = diag (F1, F1), F1 =

[
1 Ts

0 1

]
, G =

diag (G1, G1), G1 =

[
T 2

s /2

Ts

]
, ηk =

[
ηx,k, ηy,k

]T
is a discrete-time white process noise vector, and Ts

represents the discrete time interval.
The process noise covariance in the discrete-

time NCV dynamic model is as follows:

cov (Gηk) = diag
(
var (ηx,k)Q, var (ηy,k)Q

)
,

(47)

Algorithm 2 AAF-AALM
1: Input: LMB posteriors parameterized by

πa =
{(

r
(�)
a , p

(�)
a

)}
�∈La

, πb =
{(

r
(�′)
b , p

(�′)
b

)}
�′∈Lb

2: Output: fused posterior πf

3: Function AAF-AALM(πa, πb)

4: classify πa and πb according to Eqs. (40)–(43)
and obtain πM

a , πM
b , LM

a , LM
b , πNM

a , πNM
b

5: τ̃∗, πN
a , πN

b =AA_Label_Matching
(
πM
a , πM

b

)
6: Lf = ∅, L̃f = ∅

7: convert label matching to original spaces:
τ̃∗ → τ∗

8: for � ∈ L
M
a do

9: // pre-fusion stage
10: r̃

(�)
f = ωar

(�)
a + ωbr

(τ∗(�))
b

11: ω̃
(�)
a = ωar

(�)
a /r̃

(�)
f , ω̃

(τ∗(�))
b = ωbr

(τ∗(�))
b /r̃

(�)
f

12: p̃
(�)
f = ω̃

(�)
a p

(�)
a + ω̃

(τ∗(�))
b p

(τ∗(�))
b

13: // label determination stage

14: �̃
(�)
f =

⎧
⎨
⎩
�, if

∑|LM
a |

i=1 ria >
∑|LM

b |
i=1 rib

τ (�), otherwise

15: L̃f = L̃f ∪ {�̃(�)f }
16: end
17: obtain π̃f =

{(
r̃
(�)
f , p̃

(�)
f

)}
�∈L̃f

18: // posterior complement stage
19: π̃f = π̃f ∪ πNM

a ∪ πNM
b ∪πN

a ∪ πN
b

20: // uniqueness check stage
21: for i = 1 : |π̃f| do
22: find repeated labels indexed as � (i), denoted

as label set rep (� (i))

23: rf (�(i)) =
∑

�∈rep(�(i)) r̃
(�(i))
f

24: pf (�(i))=
⋃

�∈rep(�(i)) p̃
(�(i))
f , Lf=Lf ∪ {�(i)}

25: end
26: πf =

{(
r
(�)
f , p

(�)
f

)}
�∈Lf

27: return πf

where

Q =

[
T 4

s /4 T 3
s /2

T 3
s /2 T 2

s

]
. (48)

Bearings-only measurements of targets are pro-
vided by each sensor. The measurement zit at time
t generated by the sensor node i is calculated as
follows:

zit = Hi (xt) + vit, (49)

where vit is a Gaussian distributed noise whose mean
is zero and variance is Ri = 0.8◦ and

Hi (xt) = atan2
(
px (t)− S(i)

x , py (t)− S(i)
y

)
, (50)

atan2 represents the four-quadrant inverse tangent,
and

(
S
(i)
x , S

(i)
y

)
denotes the coordinates of sensor

node i.
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The clutter is represented as a Poisson RFS,
where the expected number is λc = 6 and the
states are uniformly distributed across the observa-
tion area.

In this scenario, to evaluate the robustness and
efficiency of AAF-AALM, the following three algo-
rithms are used to demonstrate the performance:

(1) AAF-AALM, which is a combination of AA
fusion with the proposed AA label matching method,

(2) AAF-GCILM, which is a combination of
GCI-based label matching method proposed by Li
SQ et al. (2019) and the AA fusion, and

(3) GCIF-GCILM, which is the GCI fu-
sion combined with the GCI-based label matching
method proposed by Li SQ et al. (2019). It is worth
noting that GCIF-GCILM was called LM-GCI in Li
SQ et al. (2019). In this paper, for the sake of com-
parison, we use GCIF-GCILM to represent LM-GCI.

In this scenario, the distributed sensor network
consists of |N | = 7 sensor nodes, which are dis-
persed at static prior known locations

(
S
(i)
x , S

(i)
y

)
for each i ∈ N . The positions of these seven sen-
sors are listed in Table 1. Six targets are supposed
to sequentially appear and then move within a two-
dimensional 8000 m × 8000 m surveillance region.
The scenario with real target trajectories and sensor
positions is illustrated in Fig. 5.

Table 1 Positions of seven sensors in this scenario

Sensor x (m) y (m)

1 1600 7200
2 7200 6900
3 7500 1500
4 2000 100
5 2000 5000
6 6000 6000
7 2900 2000

For better comparison, both the distributed and
centralized schemes are used in this scenario. In
the distributed scheme, each sensor node can ob-
tain the posterior of adjacent nodes and perform
fusion (Battistelli et al., 2013; Šauša et al., 2024).
Resorting to the consensus algorithm, all local fu-
sion results tend to be consistent and optimal. In
the centralized scheme, one of the nodes is regarded
as the fusion center, receiving all the local posteri-
ors and performing the fusion process. The suffix
is appended to the algorithm to distinct the fusion

9000

8000

7000

6000

Target trajectory Sensor node

Communication link

T6: 19–99 s

T4: 1–85 s

T2: 11–90 s

T3: 26–85 s

T1: 16–95 s

T5: 11–90 s

5000

4000

3000

2000

1000

0
0 2000 4000

x (m)
y 

(m
)

6000 8000

Fig. 5 A distributed network with seven bearings-
only sensors and six targets, where black ◦◦◦ denotes
the initial position, black ��� denotes the end position,
and blue ◦◦◦ denotes the position of the target every
10 s after birth. References to color refer to the online
version of this figure

schemes. For instance, “AAF-AALM-K1” is the dis-
tributed AAF-AALM filter with only one consensus
iteration. “AAF-AALM-Central” represents the cen-
tralized AAF-AALM filter.

The fusion weights of sensor nodes are deter-
mined as the metropolis weights (Fantacci et al.,
2016), which are denoted as follows:

ω(i,j) =

⎧⎨
⎩

1

1+max(|N (i)|,|N (j)|) , i ∈ N , j ∈ N (i) \ {i},

1−
∑

j∈N (i)\{i} ω
(i,j), i ∈ N , j = i.

(51)
Relatively, in the centralized scheme, the fusion

weights are identical, represented as follows:

ω(i) =
1

|N | , i ∈ N . (52)

Simulation results of one single run of AAF-
AALM-K1 are shown in Fig. 6, and the detection
probability is 0.9. It can be seen that all targets
are assigned different labels and have been estimated
successfully.

The average tracking performance of Opti-
mal SubPattern Assignment (OSPA) errors (Schuh-
macher et al., 2008) and cardinality distributions
over 100 Monte Carlo simulations are illustrated in
Figs. 7 and 8, respectively. We can see that AAF-
AALM and AAF-GCILM provide similar tracking
performances when the detection probabilities are
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Fig. 6 Tracking results of AAF-AALM-K1 in one
single run. References to color refer to the online
version of this figure

0.99 and 0.80. However, when the detection proba-
bilities are 0.50 and 0.30, compared to AAF-GCILM,
AAF-AALM achieves a lower OSPA error. The den-
sity fusion methods adopted by AAF-AALM and
AAF-GCILM are the same, and both of them are
AA fusion. The only difference is the label matching
method; one is AALM and the other is GCILM. So,
it can be inferred that it is label matching that leads
to the different final fusion results. Based on this, it
can be concluded that compared to GCILM, AALM
can still guarantee effective label matching under low
detection probability scenarios.

Moreover, it has been shown that, compared to
the other two methods, GCIF-GCILM achieves the
worst results. As illustrated in Fig. 8, the cardi-
nality estimate of GCIF-GCILM degrades severely
as the detection probability decreases, which is
consistent with the results derived in Gao et al.
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Fig. 7 OSPA errors under different detection probabilities: (a) 0.99; (b) 0.80; (c) 0.50; (d) 0.30
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(2020a). However, as illustrated in Figs. 7 and 8,
even in high detection probability scenarios, the per-
formance of GCIF-GCILM is still worse than those
of the other two AA fusion based methods. This
is because only restricted information is provided
in the bearings-only measurements, which leads to
highly sensitive performance of GCI fusion once la-
bels are mismatched. Furthermore, under low detec-
tion probability scenarios, AAF-AALM outperforms
GCIF-GCILM distinctly, especially for cardinality
estimation.

Under different detection probabilities, the av-
erage OSPA errors are illustrated in Fig. 9. It is
shown that AAF-AALM achieves the best perfor-
mance under the detection probability between 0.30
and 0.99. On the contrary, GCIF-GCILM has the
worst performance in both distributed and central-
ized fusion schemes. Moreover, the OSPA error

shows rapid growth when the detection probability
is under 0.40.

To take into account track label errors (Vo BN
et al., 2019), by using a suitable base distance,
the OSPA(2) (OSPA-on-OSPA) metric addresses the
above issue elegantly between two tracks (Beard
et al., 2017). The OSPA(2) errors are illustrated in
Fig. 10. All OSPA(2) errors increase as the detection
probability decreases, but AAF-AALM achieves the
smallest error in all detection cases, which resembles
the performance in OSPA error.

To evaluate the performance of state localiza-
tion estimation, the localization errors are shown
in Fig. 11. It is worth pointing out that, when
the detection probability is between 0.40 and 0.99,
the localization error of GCIF-GCILM is lower
than those of the other two AA fusion based
methods. One reason why GCIF-GCILM has the

AAF-AALM-Central AAF-GCILM-Central GCIF-GCILM-Central

GCIF-GCILM-K1AAF-GCILM-K1AAF-AALM-K1

True cardinality

C
a

rd
in

a
lit

y

6

5

4

3

2

1

0

C
a

rd
in

a
lit

y

6

5

4

3

2

1

0

C
a

rd
in

a
lit

y

6

5

4

3

2

1

0

C
a

rd
in

a
lit

y

6

5

4

3

2

1

0

(b)

0 20 40 60 80 100

Time (s)

(a)

0 20 40 60 80 100

Time (s)

(d)

0 20 40 60 80 100

Time (s)

(c)

0 20 40 60 80 100

Time (s)

Fig. 8 Target cardinality under different detection probabilities: (a) 0.99; (b) 0.80; (c) 0.50; (d) 0.30
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quite qualified performance in localization estima-
tion whereas achieves the worst overall tracking re-
sult is that the GCI-based label matching method
adopted in GCIF-GCILM cannot guarantee efficient
matching, especially in low detection scenarios.

From the above results, it is shown that the
proposed AAF-AALM outperforms AAF-GCILM in
terms of state estimation, especially under low de-
tection probabilities. Moreover, to further illustrate
the performance in computation, the average execu-
tion time of AAF-AALM, AAF-GCILM, and GCIF-
GCILM in the same complete MTT process is de-
picted in Fig. 12. It is shown that AAF-AALM ex-
hibits much more computational efficiency compared
to the other two methods, whereas AAF-GCILM
suffers from the heaviest computational load. The
main reason is that, in the GCI-based label matching
method, the computational load increases distinctly
with the increase in the number of potential targets,
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especially in the GM implementation, which requires
complex exponentiation and integration of Gaussian
probability density functions. However, in the AA-
based label matching method, this kind of opera-
tion can be avoided, and thus the computational ef-
ficiency can be guaranteed. With the decrease of the
detection probability, the execution time of AAF-
GCILM and GCIF-GCILM increases obviously since
when the detection probability decreases, the poten-
tial target number increases. On the contrary, the
execution time of AAF-AALM remains steady with
the variation of the detection probability, which re-
veals its robustness in computation.

6 Conclusions

A distributed LMB filter with efficient la-
bel matching has been proposed in this paper.
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Considering the labels among local LMB densities
that need to be consistent, this paper has proposed
an efficient label matching method, called AALM.
This AALM first establishes a cost function accord-
ing to the proposed AA divergence, which evaluates
the discrepancy among local posteriors from the per-
spective of AA mechanism, and then converts la-
bel matching into a linear assignment problem. The
proposed label matching method is able to guaran-
tee high performance even in low detection proba-
bility scenarios. Moreover, considering the practical
problem of fusion implementation, four stages have
been proposed in the fusion process, which are pre-
fusion, label determination, posterior complement,
and uniqueness check. The overall label matching
LMB fusion process has been summarized, which
guarantees the integrity and reliability of the fused
posterior. Simulation results have demonstrated the
effectiveness, efficiency, and robustness of the pro-
posed algorithm in a distributed bearings-only MTT
scenario.
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