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1  Covariance upper-bounding technique 
 

In a network with feedback involving 1S  filters, let srP  denote the cross-covariance of the sth and rth 

estimates, which arises from the feedback, and let sP  denote the self-covariance of the sth estimate, rs, =0, 

1, …, S+1. Expanding sP  to )(/1 s  times can set srP  to zeros, as long as )(s >0 and )(0 sS
s  =1. In the 

absence of correlations, i.e., srP =0, the naïve covariance convex (CC) fusion is equivalent to Bayesian optimal 

measurement fusion. Similarly, the correlations arising from common process noise can be eliminated by re-
quiring each filter to expand the process noise covariance to )(/1 s  times. 

 
 

2  Graphical summary of conditional merging 
 
Tricolor rectangles represent the T-JMGM components described, and the dashed rectangle represents the 

predicted T-JMGM component that is missed by a local filter but supplemented by the master filter (Fig. S1). 
 

master
filter

local
filter

local
filter

local
filter

situation-1

situation-2

situation-3

situation-4

Association Result Merging Method

survival target without missed detections

survival target with missed detections

new-born target 

vanishing target 

CC

CC

CI

(empty)

label: 0   1   2   3

Origination

 
Fig. S1  Graphical summary of conditional merging 

 
 

3  Sequential fusion of IMM filters and its simulation 
 
Notice that the Bayesian fusion of IMM filters derived in our manuscript is different from the conventional 

sequential fusion in modifying model probabilities. The latter executes )( ):1( s
mu z  = 

)())|(|( )1:1()1:1()(  s
m

s
m

s upL zzxz  , s=s+1 until s=S, where )( )1:1( s
mu z   is the probability of the mth model 
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fusing s–1 sensors’ measurements )1:1( sz , and ))|(|( )1:1()( s
m

s pL zxz  is the normalized likelihood of )( sz  and 

state density )|( )1:1( s
mp zx  after fusing )1:1( sz . In the Bayesian fusion, )( ):1( S

mu z = mm
sS

s upL ))(|( )(
1 xz , 

where ))(|( )( xz m
s pL   is the normalized likelihood of )( sz   and the prior state density )(xp   under the mth 

model. )(xp  and )|( )1:1( s
mp zx  have been detailed in Section 3.1. In fact, the derived Bayesian fusion has 

been verified by Choi et al. (2024). 

We simulated S=9 linear sensor nodes with )( sz = )()( ss vxH  , where )(sH = 







0010

0001  is the linear ob-

servation matrix and the Gaussian observation noise )(sv   features a covariance of )(sR  =diag(25,25), s  . 
They cooperatively track the designed target-1. 

We compared the standard IMM filter, conventional sequential fusion, and derived Bayesian fusion after 
200 Monte Carlo runs. Fig. S2 illustrates the likelihood ratios of the CV and ACT models of the 1st, 3rd, 6th, 
and 9th sensor nodes in conventional sequential fusion. Figs. S3 and S4 present the model probability error 
curves (the sum of the absolute values of the differences between the model-conditioned true and estimated 
values) and position error curves of different algorithms, respectively. 

Fig. S2 illustrates the likelihood fading issue described above: The likelihood ratio decreases as more sen-
sors are fused. This issue reduces the ability of measurement likelihoods to modify model probabilities, so we 
can observe in Fig. S3 that the model probability error curve of the sequential fusion is higher than that of the 
Bayesian fusion. As seen in Fig. S4, the position error of the Bayesian fusion is smaller than that of the sequential 
fusion (by about 7.01%). 

 
Fig. S2  Likelihood ratios of different sensors in sequential fusion 

 
 

4  Centralized PM fusion of JMGM-MB filters 
 
The PM fusion of JMGM-MB filters inherits the form of the Bayesian fusion described by Saucan et al. 

(2017), i.e., 

 )()|()|(
1

)( XXZZX  


S

s

sp , (S1) 

where X  is a variable of multi-target state RFS, and )(X  is its prior density; )(sZ  is the measurement set of 

the sth sensor, and )|( )( XZ sp  is its likelihood function; )|( ZX  is the posterior density with Z = )(
1

sS
s Z . 
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Let the prior density )(X  = M
v

vv pr 1
)()( )},{(   , and each prior state PDF )(vp  =
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i

J
i u Pmx   . Let the fused density )|( ZX =

)F(

1
),F(),F( )},{( M

v
vv pr   with the vth fused 

state PDF ),F( vp  = ),;( ),F(
,

),F(
,

),F(
1
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v
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i

N
m

v
i

J
i u Pmx    . If the vth fused BC ),( ),F(),F( vv pr   originates 

from ),( )()( vv pr  and has absorbed )()2()1( ,...,, Szzz  ( )()( ss Zz   and can be empty  ), then according to the 

optimal Bayesian fusion, we have 
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where )( )(s
mg z = xPmxxz d),;(),|( )(

,
)(

,
)( v

mi
v
mi

s mg   and )(mg =1. 

To compute )( )(s
mg z , each JMGM component is required to always remember the estimates and error 

covariances of its ancestor N
m

v
mi

v
mi 1

)(
,

)(
, ),( Pm  originating from the prediction or target new birth. After fusing the 

measurements of all sensors, pruning and merging operations are necessary to limit computation volume. The 
propagation of other parameters, including weights    and existence probabilities r  , is the same as for the 
standard JMGM-MB filter. 

 
Fig. S3  Single-target model probability error curves of               Fig. S4  Single-target position error curves of  

different algorithms                                                                    different algorithms 

 
5  Decentralized AA fusion of JMGM-MB filters 

 
The AA fusion is similar to the proposed federated fusion except that no master filter is involved, and the 

JMGM components are merged using the same method. 
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weights )(s , 1)(1   sS
s  . Then, all T-BCs are uniformly recorded as 

)(
1

ˆ

1
)(

,T
)(

,T )},{(
s

k
S
s N

v
v
k

v
k pr 

 . The T-BCs that 

satisfy )(1)()(T)( ~)()~( vu
k

u
k

v
k

vu
k xPPx  m  will be merged into one, where )(ˆ v

kx  and )(v
kP  represent the estimate 

and error covariance of the vth T-BC, respectively; the estimate residual )(~ vu
kx )()( ˆˆ u

k
v

k xx   . Of course, the 

JMGM components with distances that are too small will be merged into one. After association and merging, 

BCs with existence probabilities smaller than BC
d  and JMGM components with weights smaller than JMGM

d  

will be discarded. 
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