
 1

Supplementary materials for

Ming LI, Wenwen ZHOU, Mengdie WANG, Yushu ZHANG, Yong XIANG, 2025. SPJEU: a self-sufficient

plaintext-related JPEG image encryption scheme based on a unified key. Front Inform Technol Electron Eng,

26(6):847-861. https://doi.org/10.1631/FITEE.2400721

1 Three image encryption schemes

An illustration of three different types of image encryption schemes is shown in Fig. S1. In Fig. S1a, the

key generation of the traditional image encryption scheme is not associated with the plaintext image to be

encrypted, and the security level is low. In Fig. S1b, the key generation of the plaintext-related image

encryption scheme is associated with the plaintext image to enhance the security, but the cost of transmitting

and managing too much additional data related to plaintext is high. In Fig. S1c, the key generation of the

proposed SPEU is associated with the plaintext image, and no additional data are required for transmission

and management.

(b)

receiverSender

Encryption Decryption

Data related to

plaintext

Data related to

plaintext
+Data related to

plaintext
+

communication channel

communication channel

(c)

receiverSender

Encryption Decryption

Data related to

plaintext
+ Data related to

plaintext
+

(a)

receiverSender

communication channel
Encryption Decryption

Fig. S1 Comparison of the three encryption mechanisms: (a) traditional image encryption mechanism; (b) image encryption mechanism

associated with plaintext; (c) SPEU

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

 2

2 Generation of key streams for DC and AC coefficients

The generation of the key streams required for encrypting the quantized DC coefficients and AC coef-

ficients are both related to the plaintext. Specifically, the generation of the keystream for encrypting the

quantized DC coefficients is related to the selected partial quantized DC coefficients. The initial key is gen-

erated by randomly and securely selecting some DC coefficients from all quantized DC coefficients through

a pseudo-random number generator. The keystream required to encrypt the quantized AC coefficients is as-

sociated with all quantized DC coefficients. The specific process is as follows:

1. The generation of the key stream used for encrypting quantized DC coefficients

Step 1: Assuming that the size of the original image img is 𝑀 × 𝑁, the sub-blocks are sized 8×8, and

the number of the sub-blocks 𝑆 = (𝑀 × 𝑁)/64. Using the unified keys key1, key2 as the initial value of the

pseudo-random number generator, generate two pseudo-random sequences 𝑘1 and 𝑘2 of length 𝑆. Note that

the pseudo-random sequences can be generated by any pseudo-random number generator, such as [34, 35].

Then 𝑘1 and 𝑘2 are processed by (S1) and (S2) to obtain 𝐻1 and 𝐻2.

𝐻1 = (⌊𝑘1 × 1013⌋) 𝑚𝑜𝑑 𝑆 + 1, (S1)

𝐻2 = (⌊𝑘2 × 1013⌋) mod(max + |min| + 1). (S2)

Step 2: Select the first 16 non-overlapped elements from the 𝐻1 sequence to form sequence 𝑊. The

obtained sequence 𝑊 is random and unique, and the range of each element is [1, S]. Suppose the elements in

𝑊 are the position indices of the sub-blocks of size 8 × 8. According to 𝑊, 16 sub-blocks of the image can

be selected randomly, and the DC coefficients of the 16 sub-blocks are extracted to form a sequence 𝐵. Since

there are some coefficients less than 0 in the DC coefficient, to facilitate the operation, 𝐵 plus |min| is com-

puted, as shown in (S3). The initial key is then generated by processing (S4) and (S5) on 𝐵1.

𝐵1 = 𝐵 + |min|, (S3)

L=max+|min|+1, (S4)

{
initial1 = (sum(B1(1: 8))) mod 𝐿.
initial2 = (sum(B1(9: 16))) mod 𝐿.

 (S5)

Step 3: The key stream required for the encryption of quantized DC coefficients is generated by a

pseudo-random number generator and the initial values 𝑥0 and 𝑦0 are obtained by (S6), and two pseudo-

random sequences 𝑧1 and 𝑧2 of length (S-16) are generated.

{
𝑥0 = key3 + initial1.

𝑦0 = key4 + initial2.
 (S6)

2. The generation of the key stream used for encrypting quantized AC coefficients

Step 1: The quantized DC coefficients in all sub-blocks are extracted to form the sequence 𝐷. Then 𝐷 is

processed by (S7).

initial3 = sum(𝐵)/(𝑀 × 𝑁). (S7)

Step 2: The initial values 𝑥1, 𝑦1 of the pseudo-random number generator are obtained by (S8). Two

random sequences 𝑧3, 𝑧4 are generated by a pseudo-random number generator.

 3

{
𝑥1 = key5 + initial3.

𝑦1 = key6 + initial3.
 (S8)

3 Example of DC coefficient encryption

0 0 0 08 1 0 0

0 0 0 03 0 -2 0

0 0 0 05 2 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 0-5 0 -2 0

0 0 0 01 0 0 2

0 0 0 00 -3 1 0

0 0 0 05 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 043 0 3 0

0 0 0 0-1 2 0 0

0 0 0 00 1 0 0

0 0 0 01 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 0-21 0 1 0

0 0 0 02 1 4 -7

0 0 0 03 -5 0 0

0 0 0 00 2 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

1 3

2 4

DCT image

0 0 0 03 1 0 0

0 0 0 03 0 -2 0

0 0 0 05 2 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 024 0 -2 0

0 0 0 01 0 0 2

0 0 0 00 -3 1 0

0 0 0 05 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 0-17 0 3 0

0 0 0 0-1 2 0 0

0 0 0 00 1 0 0

0 0 0 01 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 011 0 1 0

0 0 0 02 1 4 -7

0 0 0 03 -5 0 0

0 0 0 00 2 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

1 3

2 4

DCT image

DC coefficients encryption

DC coefficients reorganization

-5 438 -21

1 4 2 3

B

W

Q

location index

24 -173 11

1 4 2 3

B2

W

Q4

location index

Fig. S2 Example of DC coefficient encryption

4 Proof of homomorphism

Proposition 1: Modulo addition (L)-based encryption is additively homomorphic.

Proof: Let b1 and b2 denote two different DC coefficients in B1, respectively, and h1 and h2 denote

random numbers used to encrypt b1 and b2 in key stream H2. If ⊙M is an arithmetic addition and ⊙C is a

modulo addition, that is:

𝐸𝑛(𝑏1 ⊙𝑀 𝑏2, ℎ1 + ℎ2) = 𝐸𝑛(𝑏1 + 𝑏2, ℎ1 + ℎ2)

 = (𝑏1 + 𝑏2 + ℎ1 + ℎ2)mod(𝐿)

 = ((𝑏1 + ℎ1)mod(𝐿) + (𝑏2 + ℎ2)mod(𝐿))mod(𝐿)

 = (𝐸𝑛(𝑏1, ℎ1) + 𝐸𝑛(𝑏2, ℎ2))mod(𝐿)

 = 𝐸𝑛(𝑏1, ℎ1) ⊙𝐶 𝐸(𝑏2, ℎ2),

then, the modulo-L encryption algorithm has the property of additive homomorphism.

Decrypt E(b1,h1)⊙CE(b2,h2) with h1+h2:

𝐷𝑛(𝐸𝑛(𝑏1, ℎ1) ⊙𝐶 𝐸𝑛(𝑏2, ℎ2), ℎ1 + ℎ2) = 𝐷(𝐸𝑛(𝑏1 ⊙𝑀 𝑏2, ℎ1 + ℎ2), ℎ1 + ℎ2)

 = (𝑏1 ⊙𝑀 𝑏2)(𝑚𝑜𝑑(𝐿))

 = ((𝑏1 + 𝑏2)(𝑚𝑜𝑑(𝐿)).

 4

B1 adopts the homomorphic encryption algorithm based on modulo L (L=max+|min|+1), the encrypted

DC coefficient B2 and the key stream used for encryption is H2. Then B2-|min|, so that the range of the en-

crypted DC coefficient is between [0, max+|min|]. B2 is the encryption result of the DC coefficients B.

In the encryption of B, the 1st-7th and 9th-15th numbers in H2 are generated randomly, but the 8th and the

16th are calculated to satisfy (ℎ1 + ℎ2 + ⋯ + ℎ8) mod 𝐿 = 0 and (ℎ9 + ℎ10 + ⋯ + ℎ16) mod 𝐿 = 0 respec-

tively, so that the plaintext-related information can be computed from the encrypted image easily and securely.

For example:

(𝐸𝑛(𝑏1, ℎ1) + 𝐸𝑛(𝑏2, ℎ2) + ⋯ + 𝐸𝑛(𝑏8, ℎ8))mod(𝐿)

 = ((𝑏1 + ℎ1)𝑚𝑜𝑑(𝐿) + (𝑏2 + ℎ2)𝑚𝑜𝑑(𝐿) + ⋯ (𝑏8 + ℎ8)mod(𝐿))mod(𝐿)

= (𝑏1 + 𝑏2 + ⋯ + 𝑏8 + ℎ1 + ℎ2 … ℎ8)mod(𝐿)

 = (𝑏1 + 𝑏2 + ⋯ + 𝑏8)mod(𝐿).

5 Example of AC coefficient encryption

0 0 0 08 0 4 0

0 0 0 03 0 -2 9

0 0 0 05 2 6 0

0 0 0 00 0 0 0

0 0 0 01 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 0-19 4 -2 0

0 0 0 08 0 0 2

0 0 0 00 -3 1 0

0 0 0 05 0 0 0

0 0 0 06 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

6 0 0 026 1 -3 0

0 0 0 0-1 2 0 0

0 0 0 00 1 -9 0

0 0 0 01 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 032 0 1 0

0 0 0 02 1 4 0

0 0 0 03 -5 -7 0

0 0 0 00 2 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

1 3

2 4

DCT image

1 3

2 4

Classification

Block scrambling other

than DC coefficients

Scramble the AC coefficients

of the same run length

DCT image

index10

index11

index12

12 2 8 11 13 17 1 4 10 9 13 14 3 5 16 6 7

8 6 5 1 9 3 7 10 2 4

5 2 1 4 3

scrambled sequence

AC coefficient of run length 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

21

AC coefficient of run length 1

AC coefficient of run length 2

0 0 0 08 0 1 0

0 0 0 06 0 6

0 0 0 02 0

0 0 0 00 0 0 0

0 0 0 03 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 0-19 0

0 0 0 03 0 0

0 0 0 00 0

0 0 0 00 0 0

0 0 0 00 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 026 0

0 0 0 00 0

0 0 0 00 -9 0

0 0 0 05 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 032 0 0

0 0 0 04 8 1 0

0 0 0 05 6 0

0 0 0 00 1 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

1 3

2 4

rehabilitation

DCT image

AC coefficient of run length 2

AC coefficient of run length 0

AC coefficient of run length 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

5 2 9 3 1 1 -5 -7

3 4 -2 1 6 2 61 2 4

-2 -3 1 -9 2

4 8 5 6 2 1 -1 -3 1

2 -3 3 -7 5 4 -1 1 3 1 9 8 -5 5 6

6 1 6 3 2 -2 2 4 4 1

2 -3 -2 1-9

1

6

-3

-7

5

4

-1

1

3

9

-5

2

-2

2

4

2

-3

-2

0 0 08 0

0 0 0 04 8 1 0

0 0 0 05 6 0

0 0 0 00 1 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

9

-5

0 0 0 0 0 026 0 1 0

0 0 0 06 0 6

0 0 0 02 0

0 0 0 03 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

1

6

2

0 0 0 0 0 0 0 0

0 0 0-19 0

0 0 0 00 0

0 0 0 00 -9 0

0 0 0 05 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

-1 3 4

1 2

-2

0 0 0 032 0

0 0 0 03 0 0

0 0 0 00 0

0 0 0 00 0 0

0 0 0 00 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

0 0 0 00 0 0 0

-7

5

-2-3

-3 2

4

Fig. S3 Example of AC coefficient encryption

 5

6 Example of AC coefficient run length distribution

Fig. S4 AC coefficient run length distribution of grayscale image Barbara (256×256)

7 Flowchart of JPEG decryption

JPEG Decompression

Unified key key1,key2

Decrypted JPEG image

Ciphertext quantization

coefficient

JPEG Compression Preprocessing
H1

The remaining encryption DC

coefficient Q4

The remaining DC coefficient Q

after decryption

Ciphertext DC coefficients D1

Encrypted key DC coefficients B2

Decrypted key DC coefficient B

Homomorphic decryption

 H2

Reverse diffusion in groups

Z1, Z2

All decrypted DC coefficients D

Z4

Z3

Ciphertext AC coefficient

Inverse scrambling sub-blocks

other than DC coefficients

Inverse scrambling runs Length

with the same AC coefficients

Decryption AC coefficient A

 D+key5,key6

B+key3,key4

JPEG encoding

Fig. S5 Flowchart of JPEG decryption

 6

8 Security proof of SPJEU

We used ciphertext-only attacks to analyze the security of SPJEU from two perspectives: the key gen-

eration mechanism and the JPEG image encryption algorithm. The proof goes as follows:

Suppose that the attacker obtains the ciphertext image without knowing the unified key, the size of the

ciphertext image is (𝑀 × 𝑁), and the number of plaintext information contained in the ciphertext is 2a.

8.1 Security analysis of the key generation mechanism in SPJEU

The encryption key of the SPJEU model consists of the unified key and related plaintext information,

and the key space of the encryption key should be large enough to resist brute force cracking.

8.1.1 Security analysis of unified key

Suppose that the attacker decrypts the ciphertext in the form of brute-force keys, and there are six unified

keys, namely key1, key2, key3, key4, key5, and key6. The precision of each key is 1016, and the key space is

(1016)6=1096≈2318, which is much larger than 2100 (Alvarez and Li, 2006).

8.1.2 Security analysis of relevant plaintext information

To obtain information related to the plaintext from the ciphertext image, the attacker first needs to obtain

the location of its plaintext information. The attacker needs a total of 𝐶𝑀×𝑁
𝑎 × 𝐶(𝑀×𝑁−𝑎)

𝑎 attempts to success-

fully obtain the relevant plaintext location information, which means that the key space of the relevant

plaintext information is 𝐶𝑀×𝑁
𝑎 × 𝐶(𝑀×𝑁−𝑎)

𝑎 . The length of the key space should be greater than 2100 to resist

the brute-force attack of the attacker (Alvarez and Li, 2006). To ensure the security of the SPJEU model, the

probability of the attacker successfully obtaining the location information should be less than
1

2100 (Alvarez

and Li, 2006).

The probability that the attacker succeeds in obtaining the location information is

𝑃𝑤 =
1

𝐶𝑀×𝑁
𝑎 ×𝐶(𝑀×𝑁−𝑎)

𝑎 , 𝑃𝑤 =
1

𝐶𝑀×𝑁
𝑎 ×𝐶(𝑀×𝑁−𝑎)

𝑎 <
1

2100.

Taking the size of a 256×256 JPEG image as an example, in the SPJEU image encryption algorithm, we

chose the information related to the plaintext as the quantized DC coefficient. The unified key selects 8

quantized DC coefficients each time, a total of 2 times, so a total of 16 relevant plaintext information is

selected. A JPEG image of size 256×256 contains a total of 1024 quantized DC coefficients. That is, the

probability of obtaining the location information is

𝑃𝑤 =
1

𝐶1024
8 ×𝐶1016

8 ≈
1

8.5106×1038 <<
1

2100 ≈
1

1.2677×1030.

Therefore, it is difficult to extract the information related to the plaintext from the ciphertext image

without knowing the unified key, and the larger the image and the less information related to the plaintext is

selected, the closer the probability of Pw is to 0, and the higher the safety factor.

8.1.3 The security analysis of the encryption key

Assuming that the attack successfully obtains the location information after 𝐶𝑀×𝑁
𝑎 × 𝐶(𝑀×𝑁−𝑎)

𝑎 attempts,

the plaintext information also needs to be combined with other unified keys to form an encryption key to

crack the ciphertext.

 7

There are four keys combined with the plaintext information: key3, key4, key5, and key6. The four keys

have a precision of 1016, and it takes brute-force cracking (1016) 4= 1064 times to obtain the key. The proba-

bility is 𝑃𝑘 =
1

1064 ≈
1

2205 <
1

2100 . Then the probability that the attacker gets the key is 𝑃 = 𝑃𝑤 × 𝑃𝑘 =
1

𝐶𝑀×𝑁
𝑎 ×𝐶(𝑀×𝑁−𝑎)

𝑎 ×
1

2205
<<

1

2100
.

So, obviously, it is infeasible for the attacker to crack the ciphertext image by brute force.

8.2 Security analysis of SPJEU JPEG image encryption algorithm

Assuming that the attacker directly makes a ciphertext-only attack on the ciphertext image and performs

brute-force cracking on each step of the algorithm, it takes C times to successfully crack the ciphertext image.

Table S1 presents the number of brute-force attacks required at each step of the algorithm. Assuming that a

256×256 ciphertext image needs to be brute-force cracked, a total of exhaustive C=16!×252!×8391!×1024!

times is required. This number is very large, and it is obviously not feasible to attack the ciphertext image by

brute force.

Table S1 Number of times required for brute force cracking

Encryption steps The number of times required for brute-force cracking

Encryption of B (DC coefficients that are used for computing) 16！=2.0923×1013

Encryption of Q (the remaining DC coefficients) (m+n)!

Scrambling of the AC coefficients with the same run length ∏ 𝑌𝑖

62

𝑖=0

!

Scrambling of all sub-blocks except DC coefficients S!

Total number of times 𝐶 = 16! × (𝑚 + 𝑛)! × ∏ 𝑌𝑖
62
𝑖=0 × 𝑆!

Reference
Alvarez G, Li S, 2006. Some basic cryptograpvhic requirements for chaos-based cryptosystems. Int J Bifurc Chaos, 16(08):2129-2151.

https://doi.org/10.1142/S0218127406015970

https://doi.org/10.1142/S0218127406015970

	Ming LI, Wenwen ZHOU, Mengdie WANG, Yushu ZHANG, Yong XIANG, 2025. SPJEU: a self-sufficient plaintext-related JPEG image encryption scheme based on a unified key. Front Inform Technol Electron Eng, 26(6):847-861. https://doi.org/10.1631/FITEE.2400721

