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1  Extension of case study 2 of a fractional-HARX system with third-order nonlinearity 

To further investigate the response of the proposed scheme by exploiting the knacks of EEFOA, the 3rd 

order nonlinearity has been taken into account. In the second case study, the proposed system comprises seven 

parameters, i.e., [k1, k2, j1, j2, r1, r2, r3], while the value of the fractional order=0.4. The system performance is 

evaluated using multiple evaluation matrices for five different noise scenarios presented as u=0.0, u=0.00015, 

u=0.0015, u=0.015, and u=0.15.  

The proposed third order fractional-HARX system is expressed as 

-1 0.4 -2 0.4( ) 1 0.45( ) 0.3( )K z z z= + +  (S1) 

-1 0.4 -1 0.4( ) 0.16( ) 1( )J z z z= +  (S2) 

2 3( ) 0.56 ( ) 0.36 ( ) 0.8 ( )m t m t m t m t= + + , (S3) 

where the parameter vector is given as 
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The fitness convergence curves are shown in Fig. S1; the response of the proposed system was assessed 

using MSE. The system achieves maximum fitness values of 4.11E-12, 4.19625E-08, 7.09322E-07, 3.27075E-

05, and 2.78103E-03 for the corresponding noise interferences, i.e., u=0.0, u=0.00015, u=0.0015, u=0.015, and 

u=0.15, as presented in Fig. S1. It has been observed that the change in the order of nonlinearity in the proposed 

scheme increases the complexity. The system convergence for the no-noise scenario shows that the system be-

comes stable while approaching 1200 iterations in achieving the best fitness value. For u=0.00015, the u=0.0015 

system becomes stable over 800 iterations and no further convergence is recorded. For the noise scenarios 

u=0.015 and u=0.15, the system achieves stability over 200 iterations in approaching the corresponding best 

fitness values. Increasing the complexity by changing the order of nonlinearity affects the performance of the 

proposed scheme; still, EEFOA’s performance is commendable. However, increasing the noise level decreases 

the accuracy in defining the natural behavior of the system. 

The fitness results of 60 autonomous executions of the EEFOA for case study 2’s fractional-HARX iden-

tification problem are presented in Fig. S2 The results indicate that the proposed EEFOA provides reasonable 
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fitness values for all noise variations, i.e., u=0.0, 0.00015, 0.0015, 0.015, and 0.15. Further, it is seen that the 

fitness values decrease with increasing noise level but, even then, the proposed EEFOA attains a fitness value 

of around 10-2 for all 60 executions of the scheme. The results presented in Fig. S2 confirm the consistent 

outcome of the EEFOA for the fractional-HARX identification problem considered in case study 2. However, 

fluctuations are observed in the different autonomous executions; therefore, in order to further investigate 

EEFOA’s performance, statistical values are also given in Table S1. 

 

Table S1  Estimated parameters for all noise scenarios of case study 2 

Noise levels ω1 ω2 ω3 ω4 ω5 ω6 ω7 

u=0 0.4500 0.2900 0.1600 1.0000 0.5600 0.3599 0.8000 

u=0.00015 0.4502 0.2904 0.1601 0.9980 0.5585 0.3565 0.7982 

u=0.0015 0.4500 0.2900 0.1588 0.9945 0.5574 0.3520 0.7955 

u=0.015 0.4499 0.2882 0.1617 0.9764 0.5361 0.3210 0.7838 

u=0.15 0.4271 0.2482 0.1253 0.9011 0.4543 0.2168 0.7443 
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(e)  
Fig. S1  Case study 2: iterative fitness curves of the best independent execution for all noise scenarios: (a) noise=0; (b) 

noise=0.00015; (c) noise = 0.0015; (d) noise=0.015; (e) noise=0.15   
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Fig. S2  Case study 2: statistical analysis over 60 independent runs 

 

To evaluate EEFOA’s performance in terms of accuracy, the estimated parameters have been plotted in 

Figs. S3–S7 for different noise interference scenarios. It has been observed that, in the no-noise scenario, the 

accuracy of the system parameters is perfect. This illustrates EEFOA’s speed in estimating parameters and ap-

proaching the steady state. Similarly, when we increase the noise up to u=0.0015, the EEFOA still provides 

accurate parameter estimation to a very close value. In high noise scenarios at levels u=0.015 and u=0.15, the 

accuracy is disturbed as observed in Figs. S3–S7 and Table S3. 

 

 
Fig. S3  Case study 2: parameter estimation curves for the best independent run for u=0 
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Fig. S4  Case study 2: parameter estimation curves for the best independent run for u=0.00015 

 

 
Fig. S5  Case study 2: parameter estimation curves for the best independent run for u=0.0015 
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Fig. S6  Case study 2: parameter estimation curves for the best independent run for u=0.015 

 

 
Fig. S7  Case study 2: parameter estimation curves for the best independent run for u=0.15 

 

To further analyze the effectiveness of EEFOA, the average accuracy for all the noise scenarios is presented 

in bar charts in Fig. S8. Additionally, the performance statistics for all five noise scenarios are presented in Table 
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S2. The bar chart representation and the statistics table indicate EEFOA’s stability and consistency. The trend 

shows that the bar chart follows the average accuracy and that the mean fitness value decreases with increasing 

noise interference. The mean fitness values for the no-noise scenario are 9.62590E-06, while for noise values 

u=0.00015, u=0.0015, u=0.015, and u=0.15, the mean fitness values achieved are 1.51770E-05, 5.62263E-05, 

1.17199E-04, and 6.33318E-03, respectively, as mentioned in Table S2. 

 
Table S2  Comparison: ranks of fitness, from the best to the worst, along with standard deviations for case study 2 

Noise levels Best fitness Mean fitness Worst fitness Standard deviation 

u=0 4.11393E-12 9.62590E-06 7.72156E-05 1.56884E-05 

u=0.00015 4.19625E-08 1.51770E-05 8.02964E-05 1.80374E-05 

u=0.0015 7.09322E-07 5.62263E-05 1.56890E-03 2.06801E-04 

u=0.015 3.27075E-05 1.17199E-04 7.29374E-04 1.01215E-04 

u=0.15 2.78103E-03 6.33318E-03 9.18258E-03 1.15436E-03 

 

 
Fig. S8  Average accuracy bar chart for all disturbance variations of case study 2 

 

The Nash–Sutcliffe efficiency (NSE) analysis was carried out to evaluate EEFOA’s efficiency by compar-

ing the estimated system response of the model with the actual response. Fig. S9 represents the NSE conver-

gence plots of EEFOA, giving NSE values equal to 1 for the no-noise scenario, illustrating a perfect match in 

terms of NSE. However, for higher order values of noise other than the maximum noise level of u=0.15, the 

NSE value remains between 0.99 and 1, demonstrating the accuracy of EEFOA for the fractional-HARX model. 
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Fig. S9  NSE-based convergence curves for case study 2: (a) no noise scenario; (b) noisy scenario 

 

NSE-based statistical plots for 60 independent executions are presented in Fig. S10. The statistical analysis 

demonstrates EEFOA’s stable and unfluctuating behavior. The stability is endorsed by the average NSE value 

achieved over 60 independent executions, i.e., [0.9606], [0.9513], [0.9294], [0.9170], and [0.8628] for u=0.0, 

u=0.00015, u=0.0015, u=0.015, and u=0.15 correspondingly. However, increasing noise affects the average 

NSE value but a value close to 1 evidences EEFOA’s promising performance for fractional-HARX. Fig. S11 

presents a comparison of the designed methodology with its state-of-the-art counterparts, including the whale 

optimization algorithm (WOA), the African vulture optimization algorithm (AVOA), Harris hawk’s optimizer 

(HHO), and the reptile search algorithm (RSA). It can be seen that the proposed EEFOA outperforms its coun-

terparts for all noise scenarios of a fractional-HARX system with 3rd order nonlinearity. The proposed EEFOA 

is also analyzed in terms of its computational complexity by calculating an average execution time and the 

corresponding standard deviation for both case studies and all scenarios of the fractional-HARX system. The 

results are presented in Table S3 and indicate that the computational time increases by increasing the iterations 

in the EEFOA. In addition, the EEFOA requires a greater computational budget for greater orders of nonlinearity 

or degrees of freedom in the fractional-HARX system. 
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Fig. S10  NSE-based statistical analysis over 60 independent runs of case study 2 

 
Table S3  EEFOA’s computational complexity analysis  

Time complexity 

Noise level Case study Iterations Average time (sec) Standard deviation 

u=0.00015 

01 500 

6.519 0.138 

u=0.0015 6.621 0.138 

u=0.015 6.511 0.030 

u=0.15 6.651 0.121 

u=0.00015 

02 800 

11.898 0.088 

u=0.0015 11.923 0.045 

u=0.015 11.857 0.044 

u=0.15 11.908 0.058 
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(e)  
Fig. S11  Comparison between EEFOA and recent equivalent algorithms for case study 2: (a) u=0.0; (b) u=0.00015; (c) 

u=0.0015; (d) u=0.015; (e) u=0.15 

 


