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1 Analysis of dataset

Fig.S1 shows the time–frequency matrices of the horizontal and vertical acceleration of bearing 1_1
under different health states. The differences not only between healthy and faulty states but also between
horizontal and vertical accelerations can be displayed. This is because the wavelet transform mines the hidden
frequency domain information in the waveform, which makes the displayed information more abundant.

2 Extended experimental analysis

2.1 Baselines

Due to our goal of RUL prediction under scarce labeled data, we choose six supervised methods to better
show the method’s performance.

CABLSTM (Luo and Zhang, 2022): A convolution-based attention mechanism bidirectional long
and short-term memory network (CABLSTM) is proposed for end-to-end lifetime prediction of rotating
machinery. First, the input signal is passed through the convolutional neural network (CNN) to obtain
the feature information. Second, the obtained feature information is input into a bidirectional long and
short-term memory network (Bi-LSTM) network with an attention mechanism.

2D-LSTM (Li et al., 2022): A two-dimensional long short-term memory (2D-LSTM) based fusion
network for RUL prediction. 2D-LSTM is used to extract the depth-temporal features of sensor data one by
one, and an an information fusion unit (IFU) is used to fuse multisensor features to predict the RUL of the
bearing.

MSGCNN-TR (Guo et al., 2022): A transformer prediction model with multiscale gated convolu-
tional neural network (MSGCNN-TR) is used to predict the RUL of rolling bearings.

HA-ConvLSTM (Zuo et al., 2023):A hybrid attention-based convolutional long short-term memory
(HA-ConvLSTM) method for evaluating RUL of bearings is used. First, the original signal is decomposed
using multiple wavelets. Second, the ConvLSTM network can adaptively weight the wavelet coefficient
channel. Finally, the learned features are used for evaluating RULs through a multilayer perceptron.

BR-GDAU (Yang et al., 2023): A bidirectional recursive gated dual-attention unit (BR-GDAU)
is used to predict the RUL in the accelerated degradation phase. Two attention gates are introduced into
the classical gated recurrent unit (GRU) to construct a bi-directional structure to fully learn the forward
and backward degradation patterns of the time series and to correct the initial hidden state of the forward
network by the final hidden state of the backward network.

CATA-TCN (Lin et al., 2024): A channel attention and temporal attention method based on
temporal convolutional network (CATA-TCN) is proposed. The channel attention is integrated into the
temporal convolutional network (TCN) to focus on sensor signals that are critical for RUL prediction and
suppress signals that are unimportant in the long-term range.
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Fig. S1 Results for bearing 1_1: (a) time–Frequency matrix of horizontal acceleration for the first sample; (b)
time–Frequency matrix of vertical acceleration for the first sample; (c) time–Frequency matrix of horizontal
acceleration for the last sample; (d) time–Frequency matrix of vertical acceleration for the last sample

2.1.1 Experimental fairness

Our problem setting involves massive unlabeled sensor data and scarce sensor data with RUL labels.
The supervised method uses training data that are consistent with our method in the finetuning phase. A
large amount of unlabeled sensor data is open to every method, it is just difficult for supervised methods to
effectively utilize unlabeled sensor data. Moreover, the sensor data with RUL labels used in the finetuning
phase of our method are exactly the same as the labeled data used in the supervised method. Thus, all
comparisons of our method with the supervised baselines are fair.

2.1.2 Comparison with supervision baselines

Tab. S1 presents the comparative results of the supervised baselines for RUL prediction for bearings with
only 50% labeled degradation data and our method. The supervised methods typically assume the availability
of a substantial amount of labeled RUL data for accurate prediction. When facing limited labeled RUL data,
the best score for the supervised approach is 0.463 and the best MAPE is 0.243, while the worst score for the
self-supervised baseline is also 0.525, and the worst MAPE is 0.219. This shows that the supervised baselines
tend to be poorer than the self-supervised solutions when the amount of labeled RUL data is limited. Then
our proposed approach outperforms the supervised methods significantly, with a minimum decrease of 0.131
in MAPE, and a minimum increase of 0.275 in the score. These results highlight the inherent difficulty of
learning reliable degradation patterns from a limited amount of labeled RUL data. Our proposed approach
leverages the abundant unlabeled sensor data to obtain the degradation data distribution, facilitating the
generation of a well-pretrained model without requiring a large amount of labeled degradation data. This
approach contributes to the reduction of the dependence on labeled degradation data.
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Table. S1 Experimental results compared to supervised methods with 50% labeled data and sufficient unlabeled
data

Metrics Method
B

1_31

B
1_4

B
1_5

B
1_6

B
1_7

B
2_3

B
2_4

B
2_5

B
2_6

B
2_7

B
3_3

Mean

Actual
RUL(s)

- 5730 339 1610 1460 7570 7530 1390 3090 1290 580 820 -

Predicted
RUL(s)

CABLSTM 5451 460 1214 1043 6626 3045 1468 2757 984 237 752 -
2D-LSTM 1141 861 2138 3755 1340 2003 376 1614 120 2098 649 -

MSGCNN-TR 4705 293 988 1135 245 2823 605 2657 669 202 136 -
HA-ConvLSTM 289 203 285 373 357 3268 1168 2487 1168 608 721 -

BR-GDAU 5521 127 2115 1511 6586 3462 1117 2764 1098 485 542 -
CATA-TCN 6021 211 1114 1086 6649 2408 1197 2408 1033 511 651 -
Our method 5607 314 1505 1483 7000 2670 1418 2807 1204 543 783 -

Ai

CABLSTM 0.845 0.007 0.426 0.372 0.649 0.127 0.459 0.688 0.440 0.129 0.750 0.445
2D-LSTM 0.062 0.000 0.011 0.000 0.058 0.079 0.080 0.191 0.043 0.000 0.485 0.092

MSGCNN-TR 0.538 0.625 0.262 0.462 0.035 0.115 0.141 0.615 0.189 0.104 0.056 0.286
HA-ConvLSTM 0.037 0.249 0.058 0.076 0.037 0.141 0.575 0.508 0.721 0.512 0.658 0.325

BR-GDAU 0.881 0.114 0.013 0.616 0.637 0.154 0.506 0.694 0.597 0.567 0.309 0.463
CATA-TCN 0.495 0.270 0.344 0.412 0.656 0.095 0.618 0.465 0.501 0.662 0.490 0.455
Our method 0.928 0.774 0.798 0.804 0.770 0.107 0.756 0.728 0.794 0.802 0.855 0.738

MAPE

CABLSTM 0.049 0.357 0.246 0.286 0.125 0.596 0.056 0.108 0.237 0.591 0.083 0.248
2D-LSTM 0.801 1.540 0.328 1.572 0.823 0.734 0.729 0.478 0.907 2.617 0.209 0.976

MSGCNN-TR 0.179 0.136 0.386 0.223 0.968 0.625 0.565 0.140 0.481 0.652 0.834 0.471
HA-ConvLSTM 0.950 0.401 0.823 0.745 0.953 0.566 0.160 0.195 0.095 0.048 0.121 0.460

BR-GDAU 0.036 0.625 0.314 0.035 0.130 0.540 0.196 0.106 0.149 0.164 0.339 0.239
CATA-TCN 0.051 0.378 0.308 0.256 0.122 0.680 0.139 0.221 0.199 0.119 0.206 0.243
Our method 0.021 0.074 0.065 0.016 0.075 0.645 0.020 0.092 0.067 0.064 0.045 0.108

1 B denotes bearing, e.g. B 1_3 denote bearing 1_3.
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2.2 Study on the effectiveness of scarce labeled data

To investigate the effect of the amount of labeled RUL data in the finetuning phase on the model
performance, we conduct experiments with different amounts of labeled RUL data, including 10%, 30%,
and 50%. We keep the data used in the alternate contrast phase the same for all experiments. Fig. S2
demonstrates the model’s performance on 11 bearings under different amounts of fine-tuning of data. As
the quantity of labeled data increases in the fine-tuning phase, the score gradually increases while the
MAPE gradually decreases. It can be observed that when only 10% of the labeled data is used, the model’s
performance deteriorates significantly, making it difficult to effectively predict the remaining useful life
[RUL].

(a) Score of our method under different
percentages of labeled data.

(b) MAPE of our method under different
percentages of labeled data.

Fig. S2 Metrics of our method under different percentages of labeled data
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