
 1

Supplementary materials for

Hui SHI, Guibin WANG, Yanni LI, Rujia QI, 2025. Full-defense framework: multi-level deepfake detection
and source tracing. Front Inform Technol Electron Eng, 26(9):1649-1661.
https://doi.org/10.1631/FITEE.2401012

1 Proactive defense module

The SepMark module includes the encoder En, the noise layer NL, and the separable decoders Tr and De.
The structure is shown in Fig. S1. An encoder En embeds a watermark into the image. The robust decoder Tr can
resist various attacks, while the semi-robust decoder De is sensitive to malicious distortions and cannot extract a
complete watermark. By comparing the extracted watermarks based on the robust decoder Tr and the
semi-robust decoder De, the authenticity of the image can be determined.

Fig. S1 Separable watermark proactive defense module

1.1 Encoder

The encoder uses a U-net-like architecture, including ConvBlock, ResBlock, Down module, and UP
module.

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

En

Men

Genuine
image

Encoded
image

NL

Tr

De

Mtr=Men

Mde1=Men

Mde2≠Men

Common
noise

De
Malicious

image

Common
noise image

Malicous attack

Down

UP

1×1
Conv

Reduce
size

ResBlock

Conv
block

Enlarge
size

 2

The ConvBlock is constructed from multiple linearly stacked ConvINRelu sub-modules. The operation of
ConvINRelu and ConvBlock is demonstrated in Eqs. (S1) and (S2):

 ConvINReluሺ𝒇ሻ ൌ Relu ቀIN൫Convሺ𝒇ሻ൯ቁ, (S1)
 ConvBlockሺ𝒇ሻ ൌ ∏ ConvINRelu௜ሺ𝒇ሻ௡

௜ୀଵ , (S2)

where Relu denotes the activation function, IN represents the instance normalization layer, Conv signifies the
convolutional layer, and f denotes the input feature map.

The ResBlock enhances the standard residual blocks by using the InstanceNorm2d instance normalization
function instead of the BatchNorm2d batch normalization function.

The Down module consists of two ConvBlock, as shown in Eq. (S3). The UP module comprises two steps,
as shown in Eq. (S4). Initially, the feature map f undergoes nearest neighbor interpolation to enlarge it fourfold.
Subsequently, the enlarged feature map f is fed into ConvBlock:

 Downሺ𝒇ሻ ൌ ConvBlockଶ, ൫ConvBlockଵሺ𝒇ሻ൯, (S3)
 UPሺ𝒇ሻ ൌ ConvBlock൫interpolateሺ𝒇ሻ൯, (S4)

where interpolate() signifies nearest neighbor interpolation, and f represents the feature map.

The encoding process involves downsampling, upsampling, and concatenation. The downsampling pro-
cess is depicted as follows:

𝒇଴ ൌ ConvBlockሺ𝐼େ୓ሻ, (S5)

𝒇௜ ൌ Downሺ𝒇௜ିଵሻ, 𝑖 ∈ ሾ1,3ሿ, (S6)
𝒖ସ ൌ Downሺ𝒇ଷሻ, (S7)

where Ico denotes the cover image, and f0, fi, and u4 represent feature vectors with different sizes. The cover
image Ico is fed into ConvBlock for feature extraction, yielding f0. Subsequently, four Down modules are fol-
lowed, where the outcomes of the first three Down modules are termed fi, and the output of the last Down
module is termed u4.

Subsequently, ui is fed into the UP module for upsampling. After processing by the UP module, the input
message sequence M is enlarged to match the sizes of fi-1 and ui-1 through linear transformation, interpolation,
and ConvBlock. Then, fi-1 and ui-1 are concatenated and fed into ResBlock, resulting in the transformed ui-1, as
described below:

 𝒖௜ିଵ ൌ UPሺ𝒖௜ሻ, 𝑖 ∈ ሼ4,3,2,1ሽ, (S8)
 𝒖௜ିଵ ൌ ResBlockሺCatሺ𝒇௜ିଵ, 𝒖௜ିଵ, 𝑴ᇱሻሻ, (S9)

where Cat denotes concatenation and M′ represents the enlarged size of the message sequence.

Finally, the cover image Ico and u0 are concatenated, and the number of channels of the concatenated result
is adjusted to 3 by a 1×1 convolution, completing the watermark embedding to produce the initial encoded
image I  The initial encoded image I  is subtracted from the cover image Ico, multiplied by the embedding
strength coefficient δ, and then added to the cover image Ico to obtain the final encoded image Ien, as shown in
Eqs. (26) and (27):

 𝑰ᇱ ൌ ConvሺCatሺ𝑰ୡ୭, 𝒖଴ሻሻ, (S10)

𝑰ୣ୬ ൌ 𝑰ୡ୭ ൅ 𝛿ሺ𝑰ᇱ െ 𝑰ୡ୭ሻ. (S11)

 3

1.2 Noise layer

The noise layer introduces various distortions to the encoded image, simulating the effects of noise and
malicious attacks during image transmission. Multiple types of distortions are incorporated and jointly trained
in the noise layer to ensure robustness against different attacks. Given the noised image Ino, the real distortion
gap can be directly obtained as gap=Ino−Ien in a detached forward propagation. Thus, both standard forward and
backward propagation can be realized through differentiable Ino=gap+Ien. Specifically, random sampling from
both common and malicious distortions, only common distortions, and only malicious distortions results in
three batches of Ino.

1.3 Separable decoders

The decoders of the SepMark comprise a robust decoder Tr and a semi-robust decoder De, which share
identical network structures but differ in their weights, as illustrated in the lower part of Fig. 3. Two decoders
perform watermark extraction from noisy images twice, with three main stages: downsampling, upsampling,
and concatenation.

Initially, the encoded image Ien is fed into ConvBlock to obtain the feature map f0. Subsequently, it se-
quentially passes through four Down modules. The process is illustrated as follows:

 𝒇଴ ൌ ConvBlockሺ𝑰ୣ୬ሻ, (S12)
 𝒇௜ ൌ Downሺ𝒇௜ିଵሻ, 𝑖 ∈ ሾ1,3ሿ, (S13)
 𝒖ସ ൌ Downሺ𝒇ଷሻ. (S14)

Next, ui is input to the UP module for upsampling, resulting in the feature map ui−1. Then, fi−1 and ui−1 are

concatenated and processed through ResBlock to produce the transformed ui−1, as follows:

 𝒖௜ିଵ ൌ UPሺ𝒖௜ሻ, 𝑖 ∈ ሼ4,3,2,1ሽ, (S15)
 𝒖௜ିଵ ൌ ResBlockሺCatሺ𝒇௜ିଵ, 𝒖௜ିଵሻሻ. (S16)

Finally, the channel of u0 is adjusted to 1 using a 1×1 convolution, and u0 is resized to [lenM×lenM] using

nearest neighbor interpolation to obtain 0u , which is then fed through linear transformation to produce a
one-dimensional matrix, yielding the decoded message sequence M  .

1.4 Adversarial discriminator

Adversarial training is used to enhance the visual quality of the encoded image. The discriminator is
trained alternately with the encoder and decoder using a PatchGAN network, which focuses on local image
regions to capture fine-grained features. By optimizing the loss, the PatchGAN network distinguishes between
original images and stego-images, aiding the encoder in improving the visual quality of the encoded image.
Initially, the image is segmented into multiple local regions (patches). Then, each patch is processed through
convolution layers and activation functions to extract local features. Finally, a 1×1 convolution is used to output
the final predicted image.

During training, we process images in mini-batches of size B=16, where the discriminator is updated using
the loss term LAd1 to learn the relative authenticity between the cover and encoded image pairs. This relative
comparison approach helps stabilize the training process and effectively prevents mode collapse issues com-
monly encountered in standard GANs. The encoder network is simultaneously optimized through LAd2, which
encourages the generation of encoded images that are perceptually indistinguishable from their cover counter-
parts. The average operation across batch samples () provides smoothed gradients and enhanced training

stability. To ensure optimal performance, we implement gradient penalty for maintaining the Lipschitz conti-
nuity of the discriminator, and the learning rates are adaptively adjusted based on the relative magnitudes of

1

1 B

i
i

I
B 


 4

different loss components. The adversarial loss terms (LAd1 and LAd2) work in synergy with other objective
functions (LEn, LTr, LDe1, LDe2, LP), collectively optimized through carefully balanced weights (λ1, λ2, λ3, λ4, λ5,
λ6) in the total loss LTotal. This comprehensive adversarial training strategy significantly contributes to both the
imperceptibility of the embedded watermarks and the robustness of our framework against various potential
attacks, while maintaining high visual quality of the encoded images.

2 Algorithm

2.1 Overall procedure of the method

The overall procedure of the method is given in Algorithm S1.

Algorithm S1 Overall procedure of the method
Input: datasets D; encoder En; decoder Tr, De; passive detection module P; detection vector V
for Ico in D
Ien=En(Ico, Men)
Ino=Common_noise(Ien)
Idf, Iwr=Deep_fake&Watermark_removal(Ien)
Mtr=Tr(Ino, Idf, Iwr)
Mde, 0, 0=De(Ino, Idf, Iwr)
V[False, True]=P(Idf, Iwr)

end for
Output: V, Mtr, Mde

2.2 Training code

Training code is given in Algorithm S2.

Algorithm S2 Training procedure of the method
Input: datasets D; adversarial discriminator Ad; encoder En; decoder Tr, De; passive detection module P; number of
training epochs T
// training stage
while t≤T do

for Ico, label in D
// Train Ad

         2 ad co ad en 2 ad en ad coAd , Ad , ,1 Ad , Ad , , 1   L L   I I I I

// Fixing Ad, train En Tr, De, and P
1 Ad2 2 En 3 Tr 4 De1 5 De2 6+ PL L L L L L        

 end for
end while
Output: Ad, En, De, and P

3 Visual quality test

Fig. S2 presents the visual quality under various attacks, including Identity, Resize, Gaussian Blur, Median

Blur, Brightness, Contrast, Saturation, Hue, Dropout, Salt & Pepper Noise, Gaussian Noise, Deepfake, and
FaceSwap, while a watermark removal attack is given in Fig. S3. From top to bottom, Figs. S2 and S3 show the
cover image Ico, the encoded image Ien, the attacked image Ino, the residual signal of N(|Ico−Ien|), and N(|Ino−Ien|),
where N(I)=(I−min(I))/(max(I)−min(I)). Each column represents a type of attack, with an image size of
256×256. From Figs. S2 and S3, there are no noticeable artifacts between the encoded images and cover images.

 5

Our algorithm successfully extracts the watermark under common attacks (Identity, JPEG, Resize, Gaussian
Blur, Median Blur, Brightness, Contrast, Saturation, Hue, Dropout, Salt & Pepper Noise, Gaussian Noise),
allowing source tracing and copyright verification. However, under deepfake attacks (Deepfake, FaceSwap) and
watermark removal attack (SWCNN), the watermark cannot be extracted, which activates the proposed deep-
fake detection module.

Identi ty Resize Gauss ian
Blur MedianBlur Brightness Contrast HueSaturat ion SaltPepperDropout Gauss ian

Noise Deepfake FaceSwap
Fig. S2 Visual quality under common and malicious deepfake attacks

Fig. S3 Visual quality under watermark removal attacks

