
1

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Supplementary materials for

Jianhao GUO, Zixuan NI, Yun ZHU, Siliang TANG, 2025. E-CGL: an efficient continual graph learner. Front Inform
Technol Electron Eng, 26(8):1441-1453.
https://doi.org/10.1631/FITEE.2500162

1 Theoretical proof

1.1 Proof for equation 11

Based on the definition of Q and r in Eq.8 and Eq.10 respectively, we can derive that:

(Qr)i =
∑

j∈V

sij∑
k∈V skj

rj

=
∑

j∈V

sij∑
k∈V skj

∑
k∈V sjk

z

=
1

z

∑

j∈V
sij

= 1 · ri.

(S1)

Therefore we have 1 · r = Qr.

1.2 Simplify r using Taylor expansion

Consider the ri in Eq.10 being unnormalized: r̂i =
∑

j∈V s(i, j) and with the Radial Basis Function
s(i, j) = e−γ||xi−xj ||22 as similarity, it can be simplified using Taylor expansion:

r̂i =
∑

j∈V
e−γ‖xi−xj‖2

2

=
∑

j∈V
e−γ(‖xi‖2

2+‖xj‖2
2
−2xT

i xj)

≈e−γ‖xi‖2
2

∑

j∈V
e−γ‖xj‖2

2

(
1 + 2γxT

i xj +
1

2

(
2γxT

i xj

)2
)

=e−γ‖xi‖2
2

⎡

⎣
∑

j∈V
e−γ‖xj‖2

2 + xT
i

⎛

⎝2γ
∑

j∈V
e−γ‖xj‖2

2xj

⎞

⎠

+xT
i

⎛

⎝2γ2
∑

j∈V
e−γ‖xj‖2

2xjx
T
j

⎞

⎠ xi

⎤

⎦

≡wi

[
a+ xT

i b + xT
i Cxi

]
,

(S2)

where wi = e−γ‖xi‖2
2 , a =

∑
j∈V e−γ‖xj‖2

2 , b = 2γ
∑

j∈V e−γ‖xj‖2
2xj , and c = 2γ2

∑
j∈V e−γ‖xj‖2

2xjx
T
j can be

pre-calculated and all of them requires an O(|V|D2) time complexity. Considering |V| � D in most cases,
such cost is acceptable for large graphs.

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

2

2 Pseudo-code of E-CGL

The pseudo-code of E-CGL is presented in Algorithm 1.

Algorithm 1 Framework of E-CGL
Require: Memory bank: M; Continual graphs: G = {G1, G2, . . . , GT }; max epochs E
Ensure: Classification model f parameterized by W

1: for t = 1 to T do
2: /**Train**/
3: Obtain current training set Gt = (Vtr

t , Etrt) and memory bufferM
4: for epoch = 1 to E do
5: Compute loss function:
6: Lnew =

∑
i∈Vtr

t
LCE(fMLP(xi;WMLP),yi)

7: Lreplay =
∑

j∈M LCE(fMLP(xj ;WMLP),yj)

8: L = Lnew + λLreplay

9: Update model parameters:
10: WMLP ← argminWMLP∈ΘL
11: end for
12: Calculate importance rank πImp by Eq.12
13: Calculate diversity rank πDiv by Eq.13
14: Sample and update memory bank:
15: M←M∪ argtopkπImp ∪ argtopkπDiv

16:

17: /**Inference**/
18: Initialize fGCN using WMLP

19: for tt = 1 to t do
20: Predict on testing data:
21: Ŷtt = fGCN(G

te
tt ;WMLP)

22: end for
23: end for

3 Implementation details

3.1 Running environment

The experiments were conducted on a machine with NVIDIA 3090 GPU (24GB memory). The E-CGL
model and other baselines were implemented using Python 3.9.161, PyTorch 1.12.12, CUDA 11.33, and DGL
0.9.14. The code was developed based on the benchmark CGLB.

3.2 Model configurations

For a fair comparison, a two-layer GCN with a hidden dimension of 256 is used as the backbone for
all compared methods. Unless otherwise specified, the same training configurations, including optimizer,
learning rate, weight decay, and training epochs, are used for all baseline methods. Specifically, a batch
size of 8000 is used when batching is necessary. Adam is employed as the optimizer with a learning rate of
0.005, and the weight decay is set to 5× 10−4. Each task is trained for 200 epochs. The reported mean and

1https://www.python.org/downloads/release/python-3916/
2https://pytorch.org/get-started/previous-versions/
3https://developer.nvidia.com/cuda-11.3.0-download-archive
4https://www.dgl.ai/

3

standard deviations of AA and AF are based on five independent runs with random seeds ranging from 0 to
4.

Table. S1 Hyperparameter list for compared methods.

Methods Hyperparameters

LwF λdist : {1.0, 10.0}, T : {2.0, 20.0}
EWC memory strength : {10000.0}
MAS memory strength : {10000.0}
GEM memory strength : {0.5}, memory nums : {100}
TWP λl : {10000.0}, λt : {10000.0}, β : {0.01}

ER-GNN sample budget : {500, 1000, 5000}, d : {0.5}, sampler : {MF,CM}
DyGRAIN results are imported from their original paper

SSM c_node budget : {100}, neighbor budget : {[0, 0]}, λ : 1

CaT sample budget : {100, 1000, 3000, 5000}
GCL-SAGE α : 0.5, β : 0.5, buffer memory slots : {500}

TACO reduction ratio : 0.5, memory buffer : 200

DSLR
β : {0.05, 0.1}, λ : {0.5}, N : {5}, K : {50},

τ : {0.8}, r : {0.15, 0.2, 0.25, 0.3}, buffer size : {100, 200, 3000}
E-CGL sample budget : {1000, 3000, 5000}, diversity ratio : {0.1, 0.25}, λ : {1.0}

3.3 Hyperparameters

Comprehensive hyperparameters specific to each method are provided in Table S1, and the reported
results are based on the best outcomes obtained through grid search on these hyperparameters. To reproduce
the results of E-CGL, set the sampling budget for Graph Dependent Replay as 1000 for CoraFull, 3000 for
OGBN-Arxiv, 5000 for Reddit and OGBN-Products. Among all sampled nodes, 25% are selected using
diversity sampling and 75% are selected using importance sampling. The loss weight λ is set to 1.

Table. S2 Statistics of the node classification datasets.

Datasets CoraFull OGBN-Arxiv Reddit OGBN-Products

#Nodes 19,793 169,343 227,853 2,449,028
#Edges 130,622 1,166,243 114,615,892 61,859,036
#Classes 70 40 40 46
#Tasks 14 10 10 23

#Cls Per Task 5 4 4 2

4 Additional experiments

4.1 Choice of inference encoders

As mentioned in Section 3.3, the networks used during the inference phase can be generalized to any
message-passing-based GNN. In most experiments in this section, we adopt GCN as the inference model.
Without loss of generality, we further evaluated other GNNs, including GraphSAGE, GAT, and GIN, as
alternative inference models.

Specifically, when adapting GAT, we replaced the original single-layer feedforward neural network used
for attention computation (a : RF ′×R

F ′ → R) with cosine similarity and employ single-head attention. This
modification avoids introducing additional model parameters and ensures parameter consistency between
the MLP used during training and the GAT used during inference.

4

Table. S3 Results of E-CGL using different GNN encoders for inference under task-IL setting.

Inference GNN
CoraFull OGBN-Arxiv Reddit OGBN-Products

AA/%↑ AF/%↑ AA/%↑ AF/%↑ AA/%↑ AF/%↑ AA/%↑ AF/%↑
GCN (default) 89.6±0.1 -2.5±0.2 82.1±1.0 0.2±0.2 92.2±0.7 -2.7±0.8 93.9±0.6 -1.2±0.3
GraphSAGE 88.2±0.4 -3.9±0.2 82.3±4.1 -5.3±0.7 91.3±0.1 -4.4±1.1 92.3±0.8 -2.0±0.4
GAT 89.5±0.1 -0.7±0.0 83.0±2.2 -0.1±0.5 92.8±0.9 -1.6±0.6 94.2±1.0 -0.7±0.1
GIN 88.3±0.1 -1.4±0.1 82.2±0.9 -3.0±2.5 93.0±1.2 -2.1±0.6 93.4±0.8 -1.1±0.4

The results are presented in Table S3. As shown, the differences in inference performance across
different encoders are relatively small, as they all share the same model parameters and differ only in the
message-passing mechanism. This supports the generalizability of E-CGL across various GNN architectures.
Additionally, GAT performs slightly better than other encoders, suggesting that the attention mechanism
may play a beneficial role in message propagation during inference.

4.2 Parameter sensitivity

(a) The y-axis is average accuracy (AA).

(b) The y-axis is average forgetting (AF).
Fig. S1 Parameter sensitivity analysis on E-CGL with the shallow shades showing the variances. Left: diversity
sampling ratio. Middle: sampling budget for Graph Dependent Replay. Right: loss weight λ.

We conducted a parameter sensitivity analysis on three factors: 1) diversity sampling ratio, 2) sampling
budget forM, and 3) loss weight λ. The average accuracy (AA) and the average forgetting (AF) results are
depicted in Fig. S1.

Firstly, we observed that the diversity sampling ratio has a minimal impact on the results of continual
graph learning. Both AA and AF exhibit slight fluctuations within a narrow range as the diversity ratio
varies. The differing curve trends also indicate that the effect of different sampling strategies depends on
specific datasets, highlighting the necessity of a combined strategy.

Secondly, the performance of E-CGL consistently improves with an increase in the sampling budget.
This aligns with expectations, as a larger budget enables the replay of more nodes, effectively enhancing
model performance. However, it is important to note that the budget cannot be infinitely expanded due
to storage limitations and concerns regarding training efficiency. Eventually, when the sampling budget

5

becomes extremely large, the replay-based method converges to joint training.
Lastly, the model’s performance initially increases and then decreases (more noticeably on OGBN-

Arxiv) as the loss weight λ is raised. This pattern aligns with intuition. In our main experiment, we simply
set λ to 1.

4.3 Visualization

Fig. S2 Visualization: learning curves of AA over task sequences. Note: The curve for joint training on
OGBN-Products is unavailable due to resource limitations.

Learning curve We visualized the learning curves of certain methods in Fig. S2 to provide further insight
into the training process over the task sequence. The learning curve represents the trend of average accuracy
(y-axis) as the number of tasks (x-axis) increases, reflecting the model’s adaptability in the continual learning
process.

All methods exhibit a downward trend in average accuracy, indicating the presence of catastrophic
forgetting. The rate of decline in the learning curves serves as an indicator of dataset difficulty, as more
challenging datasets hinder the modelâĂŹs ability to adapt effectively. OGBN-Arxiv and Reddit, which
exhibit steeper declines in AA values, are relatively challenging compared to the simpler OGBN-Products
dataset.

Another important observation is that replay-based approaches, including ER-GNN and E-CGL, con-
sistently outperform other methods. This finding suggests that the interdependencies in graph data are
strong and need to be explicitly maintained to mitigate catastrophic forgetting. By leveraging past samples
during training, replay-based methods are able to retain important information and sustain performance on
previously learned tasks.

Performance Matrix We generated performance matrices to visualize the performance of several baseline
methods and E-CGL under task-IL setting, as shown in Fig. S3. For the performance matrix, each color
block Mp

i,j at position i-th row and j-th column represents the average accuracy (AA) on task j (where
j = 1, ..., i) after the model has been trained on tasks 1 to i. The brightness of the color indicates the level
of AA, with brighter colors corresponding to higher accuracy.

Similar to the analysis conducted in the Section 4.2, most methods fall between the lower bound of
fine-tuning and the upper bound of joint training. Generally, E-CGL demonstrates higher values, and
graph-specific continual learning techniques show better overall performance.

One interesting finding in the performance matrix is related to the diagonal entries, which represent the
model’s ability to adapt to new tasks. It can be observed that in certain cases, some regularization methods

6

(a) CoraFull (b) OGBN-Arxiv

(c) Reddit (d) OGBN-Products

Fig. S3 Visualization: performance matrices on CoraFull, OGBN-Arxiv, Reddit, and OGBN-Products.

(e.g., TWP on CoraFull, GEM on OGBN-Products) exhibit weaker adaptation ability. We speculate that
these methods impose constraints on model parameter updates, which can preserve the model’s performance
on previous tasks but limit its ability to adapt to new tasks.

The overall value range of the performance matrix also directly reflects the difficulty of each dataset. It is
noticeable that most methods have darker (i.e., lower) values on OGBN-Arxiv compared to OGBN-Products.
This observation aligns with the findings in visualization of learning curve.

	Theoretical proof
	Proof for equation 11
	Simplify r using Taylor expansion

	Pseudo-code of E-CGL
	Implementation details
	Running environment
	Model configurations
	Hyperparameters

	Additional experiments
	Choice of inference encoders
	Parameter sensitivity
	Visualization

