
1

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Supplementary materials for

Shaowu XU, Xibin JIA, Qianmei SUN, Jing CHANG, 2025. Temporal fidelity enhancement for video action recog-
nition. Front Inform Technol Electron Eng, 26(8):1293-1304.
https://doi.org/10.1631/FITEE.2500164

Proof of Theorem 1

We follow that of Definition 1 of Pan et al. (2021) to prove Theorem 1 in the main text.
Let zN denote non-salient video embedding that captures action-irrelevant information and is semanti-

cally complementary to zS. The objective function is formalized as:

LDIB = −I(zS;y) + I(zN;y) + I(zS; zN). (S1)

Theorem 1 The DisenIB-based objective function, LDIB, to be minimized is consistent with maximum
compression.
Definition 1 (Consistency (Pan et al., 2021)) The lower-bounded cost functional L is consistent on maxi-
mum compression, if

∀ε > 0, ∃δ > 0, L− L∗ < δ =⇒
|I(x;u)−H(y)|+ |I(u;y)−H(y)| < ε,

(S2)

where L∗ is the global minimum of L.
Proof: The global minimum of LDIB is

L∗
DIB = minLDIB

= −max I(zS;y) + min I(zN;y) + min I(zS; zN)

= −H(y).

(S3)

We assume LDIB − L∗
DIB < δ, then we obtain the follows by combining Eq. (S1) and Eq. (S3):

H(y)− I(zS;y) < δ, I(zN;y) < δ, I(zS; zN) < δ. (S4)

Meanwhile, as zS and zN are semantically complementary, we can derive from Eq. (S4):

H(x)− I(x; zN,y) = H(x | zN,y)

≤ I(zN;y) + I(zS; zN) +H(y | zS)

< 3δ.

(S5)

For given variables, we have Markov chains zS ↔ x ↔ y, zN ↔ x ↔ y, and zS ↔ x ↔ zN. Since x

contains all the information for deducing y, we have

I(x;y) = H(y)−H(y | x) = H(y). (S6)

According to the lemma proposed in Pan et al. (2021) about mutual information in Markov chains, we
obtain

I(x; zS) + I(x;y)− I(zS;y) = I(x; zS,y), (S7)
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I(x; zN) + I(x;y)− I(zN;y) = I(x; zN,y), (S8)

I(x; zS) + I(x; zN)− I(zS; zN) = I(x; zS, zN). (S9)

By combining Eq. (S6) and Eq. (S7), and leveraging the inequality in Eq. (S4), we can obtain

I(x;y)− I(zS;y) = I(x; zS,y)− I(x; zS)

= H(y)− I(zS;y)

< δ.

(S10)

By combining Eq. (S8) from Eq. (S9), and leveraging Eq. (S5), we can obtain

I(x; zS)− I(x;y)− I(x; zS, zN) + I(zN;y)

= I(zS; zN)− I(x; zN,y) < 4δ −H(x).
(S11)

By adding Eq. (S10) and Eq. (S11), and moving H(x) from the right side to the left side, we have

H(x)− I(x; zS, zN) + I(x; zS,y)− I(x;y) + I(zN;y) < 5δ. (S12)

According to the definition of mutual information, we have

H(x)− I(x; zS, zN) ≥ 0,

I(x; zS,y)− I(x;y) ≥ 0,

I(zN;y) ≥ 0. (S13)

By combining Eq. (S12) and Eq. (S13), we further have

H(x)− I(x; zS, zN) ≤ 5δ,

I(x; zS,y)− I(x;y) ≤ 5δ,

I(zN;y) ≤ 5δ. (S14)

The data processing inequality (Cover & Thomas, 2012) indicates that the information loss is nonnega-
tive. And we can obtain the upper bound of I(x; zS) − I(zS;y) by plugging I(x; zS,y)− I(x;y) ≤ 4δ into
Eq. (S7). Thus, we have

0 ≤ I(x; zS)− I(zS;y) ≤ 5δ ⇐⇒
|I(x; zS)− I(zS;y)| ≤ 5δ.

(S15)

On one hand, Definition 1 requires to find the upper and lower bound of I(x; zS)−H(y). By combining
Eq. (S11) and Eq. (S5),

I(x; zS)− I(x;y)

= I(zS; zN)− I(x; zN,y) + I(x; zS, zN)− I(zN;y)

< 4δ −H(x) + I(x; zS, zN)− I(zN;y),

(S16)

where I(zS; zN)− I(x; zN,y)+ I(x; zS, zN)− I(zN;y) ∈ (−10δ, 4δ) according to the inequality in Eq. (S14).
Therefore, by plugging Eq. (S6) into Eq. (S16), we further have

|I(x; zS)− I(x;y)| = |I(x; zS)−H(y)| ≤ 10δ. (S17)

On the other hand, Definition 1 involves the determination of the upper and lower bound of I(zS;y)−
H(y). To this end, we extend Eq. (S15) to include Eq. (S17) for estimating I(zS;y) as follows:

|I(zS;y)− I(x,y)|
≤ |I(x; zS)− I(zS;y)|+ |I(x; zS)− I(x;y)|
< 15δ,

(S18)
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By plugging Eq. (S6) into Eq. (S18) and being combined with Eq. (S17), we have

|I(x; zS)−H(y)|+ |I(zS;y)−H(y)| < 25δ. (S19)

As the above proof, ∀ε > 0, ∃δ = ε/25 > 0, they satisfy the follows:

LDIB − L∗
DIB < δ =⇒

|I(x; zS)−H(y)|+ |I(zS;y)−H(y)| < ε,
(S20)

which means that LDIB is consistent on maximum compression according to Definition 1.

Proof of Theorem 2

We follow Theorem 1 of Liang et al. (2020) to prove Theorem 2 in the main text.
Theorem 2 The global optimum for minimizing LDIB satisfies:

D∗ = argmin
D

E [− log p(y|zS) + log p(y|zN)] (S21)

where D∗ denotes the optimal disentangler in Eq. (S1) that decomposes input segment embeddings x into
salient and non-salient video embeddings, zS and zN.

Proof sketch: We decompose LDIB into L1 = −I(zS;y) + I(zN;y) and L2 = I(zS; zN). First, we prove
that D∗ minimizes L1 by showing E[− log p(y|zS) + log p(y|zN)] ≥ E[− log p(y|z∗

S) + log p(y|z∗
N)] for any

pair (zS, zN), leading to −I(zS;y)+I(zN;y) ≥ −I(z∗
S;y)+I(z∗

N;y). Second, using a proof by contradiction,
we demonstrate that minimizing L1 also minimizes L2, ensuring I(zS; zN) is minimized. Thus, D∗ provides
the global optimum for minimizing LDIB. Detailed proof can be found in .

Proof: Let LDIB = L1 + L2, where L1 = −I(zS;y) + I(zN;y) and L2 = I(zS; zN). Firstly, we prove
that Eq. (S21) reaches the min L1. And then, we prove that L2 reaches the minimum while L1 has been
minimized. Therefore, we can prove that Eq. (S21) is a global optimum of minimizing LDIB.

(1) Given the definition of D∗, we have D∗(x) = (z∗
S, z

∗
N), and for any zS and zN ,

E[− log p(y | zS) + log p(y | zN)]

≥ E[− log p(y | z∗
S) + log p(y | z∗

N)].
(S22)

As y is encoded from the labels, the value of E[log p(y)] and E[log p∗(y)] remain constant. By adding
E[log p(y)] at both sides of Eq. (S22), we have

E[log p(y)]− E[log p(y | zS)]−
E[log p(y)] + E[log p(y | zN)]

≥ E[log p(y)]− E[log p(y | z∗
S)]−

E[log p(y)] + E[log p(y | z∗
N)].

(S23)

According to the definition of mutual information, we can derive from Eq. (S23):

− I(zS;y) + I(zN;y) ≥ −I(z∗
S;y) + I(z∗

N;y). (S24)

Eq. (S24) indicates that D∗ allows L1 to reach the minimum.
(2) To show that minimized L1 leads L2 to the minimum, we can use a proof by contradiction. Assume

that while L1 reaches the minimum, there still exists D′, satisfying that

I(z∗
S; z

∗
N)−minL2 = I(z∗

S; z
∗
N)− I(z′

S; z
′
N) > 0. (S25)

Due to any pair (zS; zN) is generated from mutually exclusive temporal attentions, we have x = zS∪zN.
Under this premise, with there are Markov chains zS ↔ x ↔ y, zN ↔ x ↔ y, and zS ↔ x ↔ zN, any
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Δ = I(zS; zN) − minL2 ≥ 0 will lead to equal decrease in I(zS;y) and increase in I(zN;y) by the same
amount as Δ. Therefore, according to Eq. (S26), we have

−I(z′
S;y) + I(z′

N;y) = − (I(z∗
S;y) +Δ′) + I(z∗

N;y)−Δ′

= −I(z∗
S;y) + I(z∗

N;y)− 2Δ′

< −I(z∗
S;y) + I(z∗

N;y),

(S26)

where Δ′ = I(z∗
S; z

∗
N) − I(z′

S; z
′
N) ≥ 0. As Eq. (S26) is a contradiction to the assumption that L1 reaches

the minimum, it can be considered that minimized L1 leads L2 to the minimum.
As the above proof, Eq. (S21) explicitly minimizes −I(zS;y) + I(zN;y) to its minimum value while

implicitly reducing I(zS; zN) to its minimum value, which is a global optimum of minimizing the objective
functional LDIB.
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