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Abstract

The electronic supplementary materials consist of snippets of the python script indicating the key implementa-

tion steps and the histograms denoting the weights and biases during the network training.

1. Snippets of Python script

1 def neural_
2 num_
3 A =
4 for
5
6
7
8
9 W =
10 b =
11 Y =
12
13 retu
1 |def net_uv(s
2 uv =
3 u =
4 v =
5 u_x
6 V_X
7 retu
8
9 def net_
10 u, Vv
11
12 u_xx
13 u_xX
14 u_xX
15
16 V_XX
17 V_XX
18 V_XX
19
20 #fun
21 f_u
22
23
24 f_v
25
26
27
28 retu
1 X_f = 1b
2 X_f = np
3 X_f = X_
4 with ope
5 np.sav

Listing 1: Architecture and initialization of the network

net (self, X, weights, biases):

layers = len(weights)+1

1.56%x(X-self.1lb)/(self.ub-self.1lb)

1 in range (0, num_layers-2):

W = weights[1]

b biases[1]

A tf.tanh(tf.add(tf.matmul (A, W, name=’matmul ’+str(l)), b,
name=’add ’+str (1)), name=’tanh’+str(l))

weights [-1]

biases[-1]

tf.add(tf.matmul (A, W, name=’matmul ’+str (num_layers-1)), b, \
name=’add’+str (num_layers-1))

rn Y

Listing 2: Implementation of the developed PINN

elf, x):

self .neural_net (x, self.weights, self.biases)
uv[:,0:1]
uv[:,1:2]

= tf.gradients(u, x, name=’u_x’) [0]
= tf.gradients (v, x, name=’v_x’) [0]
rm u, v, u_x, V_X

f_uv(self, x):
, u_x, v_x = self.net_uv(x)

= tf.gradients (u_x, x, name=’u_xx’) [0]
x = tf.gradients (u_xx, x, name=’u_xxx’) [0]
xx = tf.gradients (u_xxx, x, name=’u_xxxx’) [0]

= tf.gradients(v_x, x, name=’v_xx’) [0]
x = tf.gradients (v_xx, x, name=’v_xxx’)[0]
xx = tf.gradients (v_xxx, x, name=’v_xxxx’)[0]

ctions f and g

= (5.4968*%(10**-9))*u_xxxx + (1.3410%(10**-9))*v_xxxx + \
(1.4805%(10*x*x-6))*xu_xx + (1.4400%(10**x-6))*v_xx + \
(0.00038407)*u + (0.00038400)*v - (0.00038400)

= (1.3410%(10**-9))*u_xxxx + (2.0119%(10**-9))*v_xxxx + \
(1.4400%(10**x-6))*xu_xx + (5.7390*(10**x-7))*v_xx + \
(0.00038400)*u + (0.00038407)*v - (0.00038400)

rn f_u, f_v, u_xx, V_XX

Listing 3: Training data
+ (ub-1b)*1hs (1, N_f)
.array(sorted (X_£f))
f.reshape ((len(X_£f),1))
n("X_f.txt","wb") as f1:
etxt (f1, X_f, delimiter=",")

\



Listing 4: Xavier initialization steps

return tf.Variable(tf.truncated_normal ([in_dim, out_dim], stddev=xavier_stddev),\

1,0]-self.ul0_pred)) + \
vO_tf[0:1,0]-self.v0_pred)) + \
u0_tf[1:2,0]-self.u_ub_pred)) + \
vO_tf[1:2,0]-self.v_ub_pred)) + \
u0_x_pred)) + \

vO_x_pred)) + \

.u_x_ub_pred)) + \

.v_x_ub_pred)) + \

.f_u_pred)) + \

1 |def xavier_init (self, size, index):
2 in_dim = size [0]
3 out_dim = size[1]
4 xavier_stddev np.sqrt (2/(in_dim+out_dim))
5 name = ’weight’+ str(index)
6
7 dtype=tf.float32, name=name)

Listing 5: Loss function
1 |self.loss = tf.reduce_mean (tf.square(self.u0_tf [0:
2 tf.reduce_mean (tf.square(self.
3 tf.reduce_mean (tf.square (self.
4 tf.reduce_mean (tf.square(self.
5 tf.reduce_mean (tf.square(self.
6 tf.reduce_mean (tf.square (self.
7 tf.reduce_mean (tf.square(self
8 tf.reduce_mean (tf.square(self
9 tf.reduce_mean (tf.square (self
10 tf.reduce_mean (tf.square(self

2. Histograms during network training

.f_v_pred))

Histograms representing the variation of the weights during the training of physics informed neural networks
are plotted in Figs. Sla—d, where the number of histogram represents the number of epochs in the training.
Variation of the weights between input layer and hidden layers 1, 2, 3 and 4, are indicated by Figs. Sla—d,
respectively. In the similar lines, variation in weight distribution with the number of iterations during the
training of physics informed neural network are plotted in Figs. Sle-h. Weight distribution between input layer
and hidden layers 1, 2, 3, and 4 are shown in Figs. Sle-h, respectively.

Histograms representing the variation of the biases during the training of physics informed neural networks
are plotted in Figs. S2a—d, where the number of histogram represents the number of epochs in the training.
Variation of the biases between input layer and hidden layers 1, 2, 3, and 4 are indicated by Figs. S2a—d,
respectively. In the similar lines, variation in bias distribution with the number of iterations during the training
of physics informed neural network are plotted in Figs. S2e—h. Bias distribution between input layer and hidden
layers 1, 2, 3, and 4 are shown in Figs. S2e-h, respectively.
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Fig. S1: (a—d) Histograms representing the variation of the weights during the training of PINNs, where the number of histogram
represents the number of epochs in the training. Variation of the weights between input layer and hidden layers 1, 2, 3, and 4 are
indicated by (a), (b), (c), and (d), respectively. (e-h) Variation in weight distribution with the number of iterations during the
training of physics informed neural network. Weight distribution between input layer and hidden layers 1, 2, 3 and 4 are shown in
(e), (f), (g), and (h), respectively
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Fig. S2: (a—d) Histograms representing the variation of the biases during the training of PINNs, where the number of histogram
represents the number of epochs in the training. Variation of the biases between input layer and hidden layers 1, 2, 3, and 4
are indicated by (a), (b), (c), and (d), respectively. (e-h) Variation in bias distribution with the number of iterations during the
training of physics informed neural network. Bias distribution between input layer and hidden layers 1, 2, 3, and 4 are shown in
(e), (f), (g), and (h), respectively
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