Towards autonomous and optimal excavation of shield machine: a deep reinforcement learning-based approach

Ya-kun ZHANG¹, Guo-fang GONG¹**, Hua-yong YANG¹, Yu-xi CHEN¹, Geng-lin CHEN²

¹State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
²School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China

**E-mail: gfgong@zju.edu.cn

The pseudo-code for the implementation of the training environment

Input: Action {, }
Output: Observation {, , , , , , , reward } {True or False}

* Initialization:
 1. Load the geological data look-up table;
 2. Load the machine-ground interaction DNN model;
 3. Step number \(k \leftarrow 0 \);
 4. Output the initial observation to the DRL agent;

* function step (,) :
 1. \(T_i \leftarrow T_i \), \(F_i \leftarrow F_i \);
 2. if \(k < \) the number of training steps:
 step number \(k \leftarrow k+1 \);
 else:
 \(k \leftarrow 0 \);
 end if
 3. Read geological data \(\{P_{gw,i}, c_k, \phi_k\} \);
 4. Scale the actual action \(\{T_i, F_i\} \) and geological data \(\{P_{gw,i}, c_k, \phi_k\} \) by dividing by their corresponding maximum values;
 5. Calculate \(\{n_{i,j}, \dot{x}_i\} \) using the machine-ground interaction DNN model;
 6. Scale \(\{n_{i,j}, \dot{x}_i\} \) by dividing by their corresponding maximum values;
 7. Calculate the reward \(r_k \) value using Eq. (31);
 8. Done \(\leftarrow \) is done (, ,);
 return observation, reward, Done
end function