Electronic supplementary materials

Geometrical transition properties of vortex cavitation and associated flow-choking characteristics in poppet valves

Liang LU 1,2, Zhongdong LIANG ${ }^{1}$, Yuming LIU 1, Zhipeng WANG ${ }^{2}$, Shohei RYU ${ }^{3}$

${ }^{1}$ School of Mechanical Engineering, Tongji University, Shanghai 201804, China
${ }^{2}$ Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai 201210, China
${ }^{3}$ Technical Research Laboratory, Hitachi Construction Machinery Co. Ltd., Tsuchiura 300-0013, Japan

S1 Complete form of the momentum equations for 2D axisymmetric geometries

Under the axisymmetric assumption, there are no circumferential gradients in the flow, but circumferential velocities are permitted.

$$
\begin{array}{r}
\frac{\partial}{\partial t}\left(\rho_{\mathrm{m}} u\right)+\frac{1}{r} \frac{\partial}{\partial z}\left(r \rho_{\mathrm{m}} u^{2}\right)+\frac{1}{r} \frac{\partial}{\partial r}\left(r \rho_{\mathrm{m}} u v\right)=-\frac{\partial p}{\partial z}+\frac{1}{r} \frac{\partial}{\partial z}\left(2 r \mu \frac{\partial u}{\partial z}\right)+\frac{1}{r} \frac{\partial}{\partial r}\left[r \mu\left(\frac{\partial u}{\partial r}+\frac{\partial v}{\partial z}\right)\right], \\
\frac{\partial}{\partial t}\left(\rho_{\mathrm{m}} v\right)+\frac{1}{r} \frac{\partial}{\partial z}\left(r \rho_{\mathrm{m}} u v\right)+\frac{1}{r} \frac{\partial}{\partial r}\left(r \rho_{\mathrm{m}} v^{2}\right)=-\frac{\partial p}{\partial r}+\frac{1}{r} \frac{\partial}{\partial z}\left[r \mu\left(\frac{\partial v}{\partial z}+\frac{\partial u}{\partial r}\right)\right]+\frac{1}{r} \frac{\partial}{\partial r}\left(2 r \mu \frac{\partial v}{\partial r}\right)-2 \mu \frac{v}{r^{2}}+\rho_{\mathrm{m}} \frac{u^{2}}{r}, \\
\frac{\partial}{\partial t}\left(\rho_{\mathrm{m}} w\right)+\frac{1}{r} \frac{\partial}{\partial z}\left(r \rho_{\mathrm{m}} u w\right)+\frac{1}{r} \frac{\partial}{\partial r}\left(r \rho_{\mathrm{m}} v w\right)=\frac{1}{r} \frac{\partial}{\partial z}\left(r \mu \frac{\partial w}{\partial z}\right)+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{3} \mu \frac{\partial}{\partial r}\left(\frac{w}{r}\right)\right]-\rho_{\mathrm{m}} \frac{v w}{r}, \tag{S3}
\end{array}
$$

where t is the time, z represents the axial coordinates, r represents the radial coordinates of the symmetry axis, ρ_{m} is the mixture density, μ represents the molecular viscosity, u, v and w denotes the axial, radial and swirl velocity components, respectively.

S2 Complete formulas of the Wall-Adapting Local Eddy Viscosity (WALE) model
The rate-of-strain tensor is calculated by:

$$
\begin{equation*}
S_{i j}=\frac{1}{2}\left(\frac{\partial \bar{u}_{i}}{\partial x_{j}}+\frac{\partial \bar{u}_{j}}{\partial x_{i}}\right) . \tag{S4}
\end{equation*}
$$

The eddy viscosity is modeled as:

$$
\begin{gather*}
\mu_{\mathrm{t}}=\rho_{\mathrm{m}} L_{\mathrm{s}}^{2} \frac{\left(S_{i j}^{\mathrm{d}} S_{i j}^{\mathrm{d}}\right)^{\frac{3}{2}}}{\left(\bar{S}_{i j} \bar{S}_{i j}\right)^{\frac{5}{2}}+\left(S_{i j}^{\mathrm{d}} S_{i j}^{\mathrm{d}}\right)^{\frac{5}{4}}}, \tag{S5}\\
S_{i j}^{\mathrm{d}}=\frac{1}{2}\left(\bar{g}_{i j}^{2}+\bar{g}_{j i}^{2}\right)-\frac{1}{3} \delta_{i j} \bar{g}_{k k}^{2}, \tag{S6}
\end{gather*}
$$

$$
\begin{gather*}
\bar{g}_{i j}=\frac{\partial \bar{u}_{i}}{\partial x_{j}} \tag{S7}\\
L_{\mathrm{s}}=\min \left(\kappa d, C_{\mathrm{w}} V^{\frac{1}{3}}\right), \tag{S8}
\end{gather*}
$$

where $\bar{g}_{i j}$ denotes the velocity gradient tensor; $\delta_{i j}$ denotes the Kronecker symbol; d is the length of the point from the closed wall; V is the calculated grid volume; κ is the Von Karman's constant of $0.41 ; C_{\mathrm{w}}$ is defined as the WALE constant of $0.325 ; S_{i j}^{\mathrm{d}}$ and L_{s} represent model variable defined by Eqs. (S6) and (S8), respectively.

S3 Complete formulas of the Schnerr-Sauer model

The mass transport equation could be described as:

$$
\begin{equation*}
\frac{\partial\left(\rho_{\mathrm{v}} \alpha_{\mathrm{v}}\right)}{\partial t}+\frac{\partial\left(\rho_{\mathrm{v}} \alpha_{\mathrm{v}} u_{j}\right)}{\partial x_{j}}=\dot{m}^{+}-\dot{m}^{-} \tag{S9}
\end{equation*}
$$

where, the source term \dot{m}^{+}represents evaporation and \dot{m}^{-}represents condensation. In the bubble dynamics, the two terms are calculated through the Rayleigh-Plesset equation:

$$
\begin{cases}\dot{m}^{+}=\frac{\rho_{\mathrm{v}} \rho_{1}}{\rho} \alpha_{\mathrm{v}}\left(1-\alpha_{\mathrm{v}}\right) \frac{3}{R_{\mathrm{b}}} \sqrt{\frac{2}{3} \frac{\left(p_{\mathrm{v}}-p\right)}{\rho_{1}}}, & p \leq p_{\mathrm{v}} \tag{S10}\\ \dot{m}^{-}=\frac{\rho_{\mathrm{v}} \rho_{1}}{\rho} \alpha_{\mathrm{v}}\left(1-\alpha_{\mathrm{v}}\right) \frac{3}{R_{\mathrm{b}}} \sqrt{\frac{2}{3} \frac{\left(p-p_{\mathrm{v}}\right)}{\rho_{\mathrm{v}}}}, & p \geq p_{\mathrm{v}}\end{cases}
$$

The bubble radius R_{b}, vapor volume fraction α_{v} and the bubble number density N_{b} are related, can be represented as:

$$
\begin{equation*}
R_{\mathrm{b}}=\left(\frac{\alpha_{\mathrm{v}}}{1-\alpha_{\mathrm{v}}} \cdot \frac{3}{4 \pi} \cdot \frac{1}{N_{\mathrm{b}}}\right)^{\frac{1}{3}} \tag{S11}
\end{equation*}
$$

In current work the bubble number density N_{b} is defined as a constant value of 10^{13}.

S4 Solution methods

Solution method	
Solver	Coupled
Gradient discretization method	Least Squares Cell Based
Pressure discretization method	PRESTO !
Momentum discretization method	Bounded Central Differencing
Volume fraction discretization method	QUICK
Transient formulation	Bounded Second Order Implicit

S5 Complete grid refinement method and GCI calculation formulas

Firstly, a coarse grid, Grid 1, was generated, and then the grid spacing was halved to obtain the finer grids, Grid 2 and Grid 3. The numerical calculation solutions, f_{1}, f_{2} and f_{3}, can be expressed using the generalized Richardson extrapolation equation as:

$$
\left\{\begin{array}{l}
f_{1}=f_{\text {exa }}+c h_{1}^{s}+o\left(h_{1}^{s+1}\right), \tag{S12}\\
f_{2}=f_{\text {exa }}+c h_{2}^{s}+o\left(h_{2}^{s+1}\right), \\
f_{3}=f_{\text {exa }}+c h_{3}^{s}+o\left(h_{3}^{s+1}\right),
\end{array}\right.
$$

where, $f_{\text {exa }}$ denotes the calculation solution when the grid spacing approaches zero, serving as the exact solution, c is a constant value, h_{1}, h_{2} and h_{3} represent grid spacings, and s denotes the order of convergence and dependents on the calculation method.

The grid refinement ratio r_{g} is defined as:

$$
\begin{equation*}
r_{\mathrm{g}}=\frac{h_{1}}{h_{2}}=\frac{h_{2}}{h_{3}} . \tag{S13}
\end{equation*}
$$

Neglecting higher-order terms in Eq. (S12) and eliminating the $f_{\text {exa }}$ and c :

$$
\begin{equation*}
\frac{f_{1}-f_{2}}{f_{2}-f_{3}}=\frac{h_{1}^{s}-h_{2}^{s}}{h_{2}^{s}-h_{3}^{s}} . \tag{S14}
\end{equation*}
$$

Taking the logarithm of both sides of Eq. (S14):

$$
\begin{equation*}
s=\frac{\ln \left(\frac{f_{1}-f_{2}}{f_{2}-f_{3}}\right)}{\ln r_{g}} \tag{S15}
\end{equation*}
$$

Set $\varepsilon_{1}=\left(f_{1}-f_{2}\right) / f_{1}, \quad \varepsilon_{2}=\left(f_{2}-f_{3}\right) / f_{2}$, the estimated fractional error could be expressed as,

$$
\left\{\begin{array}{l}
\frac{f_{1}-f_{\text {exa }}}{f_{1}}=\frac{f_{1}-f_{2}}{f_{1}\left[1-\left(\frac{1}{r_{g}}\right)^{s}\right]}=\frac{\varepsilon_{1} r_{\mathrm{g}}^{s}}{r_{\mathrm{g}}^{s}-1}, \tag{S16}\\
\frac{f_{2}-f_{\text {exa }}}{f_{2}}=\frac{f_{1}-f_{2}}{f_{2}\left(r_{\mathrm{g}}^{s}-1\right)}=\frac{\varepsilon_{1}}{r_{\mathrm{g}}^{s}-1}, \\
\frac{f_{3}-f_{\text {exa }}}{f_{3}}=\frac{f_{2}-f_{3}}{f_{3}\left(r_{\mathrm{g}}^{s}-1\right)}=\frac{\varepsilon_{2}}{r_{\mathrm{g}}^{s}-1} .
\end{array}\right.
$$

The Grid Convergence Index (GCI) is defined as:

$$
\begin{equation*}
\mathrm{GCI}=F_{\mathrm{s}} \cdot\left|\frac{f-f_{\text {exa }}}{f}\right|, \tag{S17}
\end{equation*}
$$

where f represents the numerical calculation solution and F_{s} is a factor of safety, $F_{\mathrm{s}}=1.25$. GCI indicates an error band of the deviation of the solution from the exact value. Therefore, it also reflects the variation of the solution as the grid is further refined.

S6 Nomenclature

α	throttling angle, rad
α_{v}	volume fraction number of vapor
μ_{l}	dynamic viscosity of liquid, $\mathrm{kg} /(\mathrm{m} \mathrm{s})$
μ_{m}	mixing dynamic viscosity, $\mathrm{kg} /(\mathrm{m} \mathrm{s})$
μ_{t}	eddy viscosity, $\mathrm{kg} /(\mathrm{m} \mathrm{s})$
μ_{v}	dynamic viscosity of vapor, $\mathrm{kg} /(\mathrm{m} \mathrm{s})$
ρ_{l}	density of liquid, $\mathrm{kg} / \mathrm{m}^{3}$
ρ_{m}	mixing density, $\mathrm{kg} / \mathrm{m}^{3}$
ρ_{v}	density of vapor, $\mathrm{kg} / \mathrm{m}^{3}$
σ	Cavitation number
$\tau_{i j}$	the sub-grid scale stress
L_{s}	sealing length, mm
L_{x}	valve opening, mm
\dot{m}^{+}	mass transfer source term connected to evaporation, $\mathrm{kg} /\left(\mathrm{m}^{3} \mathrm{~s}\right)$
\dot{m}^{-}	mass transfer source term connected to condensation, $\mathrm{kg} /\left(\mathrm{m}^{3} \mathrm{~s}\right)$
p	pressure, Pa
$p_{\text {in }}$	inlet pressure, Pa
$p_{\text {out }}$	outlet pressure, Pa
p_{v}	vapor pressure, Pa
r_{a}	inlet radius, mm
R_{a}	length-to-diameter ratio
$S_{i j}$	rate-of-strain tensor for the resolved scale, s^{-1}
t	time, s
u	velocity, m$/ \mathrm{s}$
x	Cartesian coordinate, m

