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Section S1 

 

Refer to El-Kadi and Williams (2000), the strength of the cement soil within an individual CM pile is as-

sumed to follow a normal distribution as Eq. (S1). 
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where, the random variable x, in this study, represents the undrained shear strength;   and   represent the 

mean and standard deviation, respectively. 

The autocorrelation function is given by Eq. (S2) in 2-D conditions. In the one-dimensional case, it de-

generates to Eq. (S3). 
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where, Lz is the correlation distance in the z direction, which is set to be 1m; 
,i j

zd
 
is the distance in the z direction 

between point i and point j. Once the autocorrelation matrix 
m mρ

 
is obtained, the corresponding covariance 

matrix 
m mC

 
can be calculated using the following formula: 

 2
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The upper triangular matrix s  is obtained through standard Cholesky decomposition, such that TC ss . 
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The recursive expression for Cholesky decomposition is shown in Eq. (S5), where
ijc  represents the element in 

the row i and column j of the original matrix C . 
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The expression for the non-drained shear strength random field at each point in space can be obtained by 

superimposing the mean and fluctuation components, as shown below: 
 

   u  ss μ  (S6) 

 

where,  is a vector that follows a standard normal distribution. 

Based on this, an improvement method was proposed by Zhu et al. (2017), where the average strength 

changes linearly with depth, as shown in Eq. (S7). Although the mean strength at each depths z is different, 

within the range of the strength random field, the standard deviation of the undrained shear strength remains 

constant, and that is to say 
0ln ln const

zi ic c   . 

 

 
u u 0zc c z     (S7) 

 

where, 
uzc represents the strength mean at depth z, 

u 0c represents the surface soil strength mean, and  rep-

resents the gradient of the undrained shear strength with increasing depth.  

Finally, we can obtain Eq. (S8). 
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