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Section 1  Time Synchronous Averaging Spectrum (TSA-spectrum) 

Definitions of TSA 

TSA is defined as Definition 1. The only parameter of TSA is the operation cycle  , which is 

presented as Definition 2. By using TSA, a discrete sequence with length  (   ) is transformed 

into a sequence with the length of  , as illustrated in Fig. S1.  

Definition #1: Time Synchronous Averaging (TSA). For a continuous signal    ( ), given a 

sampling frequency         and a sampling duration  , we can obtain a discrete sequence 

  {    (    )|             }, where   ⌊    ⌋. With a given positive integer  , we 

define the TSA of   as   

   (   )  {
 

   
∑      

   
   |             }                                   (S1) 

where   ⌊   ⌋ is the total number of valid samples.   
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Particularly, when the sequence   has an infinite length of  , the TSA of    given parameter   

is given as:   

   (    )  {      
 

   
∑      

   
   |             }                    (S2) 

where,    represents a discrete sequence and   has infinite number of elements.  

Definition #2: Operation Cycle (OC) of TSA. The positive integer   of    (   ) is called the 

operation cycle.  

It should be emphasized that throughout this paper, we assume that   ⌊   ⌋ is sufficiently large. 

Otherwise,    (   ) may become meaningless due to a low signal to noise ratio (SNR). The value 

of ⌊   ⌋ is the key factor that contributes to the denoise characteristics of TSA. TSA provides an 

easy, concise, and special method to process a discrete sequence. TSA is a powerful tool for 

extracting the periodic components of a given sequence, especially for time series with a low SNR. 

 
Fig. S1 Illustration of TSA 

 

Basic theory of TSA   

This section provides some of the basic mathematics of TSA. TSA is particularly useful when 

dealing with a quasiperiodic signal. Let   be the basic period of a sequence 

  {  |             }, namely,        . All the following questions are about what we can 

obtain by applying TSA on   with the operation cycle  . To answer this question, the following 

content is presented based on the congruence theory. We introduce two lemmas given as follows:   

Lemma #1: Given        and (   )   , the remainder set of     divided by  , denoted 

as  (      )  {  |        (     )     }, is given as {         }.    

Lemma #2: Given        and (   )     , the remainder set of     divided by  , 

denoted as  (      )  {  |        (     )     }, is given as {            }.    
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These foundational lemmas provide essential insights into the mathematical principles of TSA, 

paving the way for Proposition #1. The proof of Lemmas #1 and #2 and Proposition #1 are provided 

in the following.  

Proposition #1: Let   {  |             } be a discrete sequence sampled from a continuous 

periodic signal    ( )   (    ) with the sampling frequency        , where       is 

the period of  ( ). If            and     and given the operation cycle      and 

   , with (   )   , we have the following result  

   (   )  [{
 

  
∑      

    
   |           }]

  
                        (S3) 

 

where              . [{ }]  represents a copy of vector { } with   times. 

Proposition #1 underscores the essence of TSA in capturing periodic components within a signal. By 

exploiting the congruence theory, TSA isolates the cyclic variations, enhancing the extraction of 

periodic signals. Subsequently, we derive two significant corollaries from Proposition #1: 

Corollary #1: Letting   {  |             } be a discrete sequence with         and 

taking operation cycle   satisfying (   )   , we have    (   )  {  |             }.  

Corollary #2: Letting   {  |             } be a discrete sequence with         and 

taking operation cycle   satisfying  (   )   , we have    (   )  { ̅|             } , 

where  ̅  
 

 
∑   

   
    is the average value of   within in one period.  

Corollary #1 shows us that TSA will produce the signal within the whole cycle if we only use the 

operation cycle   equal to the period   of the given signal. Corollary #2 shows that if we use an 

operation cycle   that shares no common divider with  , the TSA will produce a constant vector 

with each element equal to the average value of   within one period.  

These two corollaries have profound implications: 

(1) Precise Period Extraction: Corollary #1 showcases the capability of TSA to faithfully reproduce 

the original signal when the operation cycle matches the signal's period. This property facilitates 

the extraction of periodic signals when the exact period is known. If we know the precise period 

  of sequence  , we can easily extract the periodic signal by applying TSA with the operation 

cycle of    . 

(2) Period Estimation in Unknown Cases: Corollary #2 highlights the adaptability of TSA in cases 

where the exact period is unknown. TSA can be applied with various operation cycles, and the 

results from cycles significantly different from the signal's period can be statistically averaged, 

aiding in period estimation. If we don’t know the precise period   of sequence  , we can 

search from a wide range of possible periods, and the results of the operation cycles that are far 

different from   can be averaged, which can be detected easily using a statistical method such 

as the standard deviation. 
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It should be noted that we present Proposition #1 in a relatively rigorous form by assuming that the 

sequence   is sampled from a continuous signal  ( ) with a period      . Note that    is a 

real number, but the period of a discrete sequence is always an integer. In most cases, we expect that 

   is an integer multiple of the sampling interval        , so the nature of TSA can be presented 

in an elegant form simply based on number theory. However, in practice, we can always observe a 

nonzero decimal part of    to be divided by   . In this case, we provide Proposition #2 as a 

supplement to show how this nonzero decimal part influences the performance of TSA.  

The situation becomes much more complicated when   , the period of  ( ), cannot be evenly 

divided by the sampling interval        , that is, when          , where      and 

     . Particularly, we focus on the TSA with the operation cycle    . The proof of 

Proposition #2 is provided in the section of .  

 

Proposition #2: Let   {  |             } be a discrete sequence sampled from a continuous 

periodic signal    ( )   (    ) with the sampling frequency        , where    is the 

period of  ( ) . Assuming that          , where      and      , and given the 

operation cycle    , we have the following result  

 

   (   )  { ̃ |           }                                (S4) 

 

where  ̃  { ̃ |             } is the discrete sequence sampled from a filtered result of  ( ) 

by a moving average filter with a window length of ⌊   ⌋   .    

 

By comparing Corollary #1 and Proposition #2, the influence of the nonzero decimal part of the 

period       on the result of    (   ) can be understood as a smoothing effect. We introduce a 

new definition, called the smoothing effect length (SEL), given as Definition #3. The SEL is a 

quantitative description of the degree of the smoothing effect when the decimal part of  ’s period    

is not equal to zero. The SEL is determined by the ratio between   and  , the magnitude of  , and 

the sampling interval        . Furthermore, the smoothing effect can only be observed when the 

operation cycle   is close to the cycle   of sequence  . 

Definition #3: The smoothing effect length (SEL). The SEL, denoted as     ⌊   ⌋   , is the 

window length of the equivalent moving average filter in a TSA of a periodical signal  , where   is 

the length of  ,    is the sampling interval and         ⌊     ⌋ is the decimal part of  ’s 

period    divided by   . SEL plays a vital role in balancing noise reduction and signal preservation 

in TSA. Customizing SEL allows us to adapt TSA to various signal characteristics and analysis goals. 

We explore practical methods, such as Super Resolution Analysis (SRA), to optimize TSA's 

performance by adjusting SEL based on specific signal properties and analysis requirements. 
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Denoise property  

In the beginning, we propose TSA based on the consideration of denoise characteristics. This section 

is focused on the denoise property of TSA. TSA performs robustly against noise. This can be 

addressed in Proposition 3, which is proven in the section of Proof of the Propositions 1-3.  

Proposition 3 shows that we can use    ( ̂  ) to approximate    (   ). If ⌊   ⌋ is sufficiently 

large,    ( ̂  )  is approximately equal to    (   ) . More exactly, the variance of this 

approximation decreases at a speed of ⌊   ⌋  . Proposition 3 tells us that we can simply enhance the 

denoise performance of TSA by increasing the sampling time of  ̂( ). 

Proposition #3: Given  ̂  { ̂ |             } as a finite-length discrete sequence sampled 

from a continuous quasiperiodic signal  ̂   ̂( )   ( )   ( )  with the sampling frequency 

       , where  ( ) is a continuous periodic signal with the period    and  ( ) is a noise term 

satisfying  [ ( )]    and  [  ( )]    . When given the operation cycle  , we have the 

following result 

1.  [   ( ̂  )     (   )]  { |             }                                (S5) 

2.  [(   ( ̂  )     (   ))
 

]  {
 

 
  |             }                          (S6) 

where   ⌊   ⌋.  

 

TSA-spectrum  

According to Propositions 1-3, it is obvious that if we know the major cycle   of a measured time 

series exactly, we can use TSA by setting the operation cycle    , so that we can extract the 

denoised signal hidden inside the measured signal. All other components with periods different from 

 , such as those   satisfying (   )   , are averaged or eliminated. However, the following 

problem concerns how to determine the accurate operation cycle of our interest. With this aim, this 

section introduces the TSA-spectrum, a tool used to analyze the hidden periods in a time series.  

The definition of the TSA-spectrum is given as follows: 

Definition #4: TSA-spectrum. Given a series of operation cycles   {   |          } , the 

TSA-spectrum    (   ) of a discrete sequence   {    (    )|         } is defined as:  

   (   )   {   (   (     ))|          }                                  (S7)                                              

where the operator    ( ) calculates the standard deviation.  

The TSA-spectrum is an important tool for analyzing the hidden periods of different components in a 

time series. According to Propositions 1-3, if we set an operation cycle     close to the period of  , 

the value of the TSA-spectrum at that point is significantly large; otherwise,    (     ) becomes 

an averaged value of  , and the standard deviation is small. Consequently, a larger spectrum value 



 6 

indicates that the operation cycle is more likely to be a hidden period in Y. We can calculate the 

TSA-spectrum, analyze the key operation cycles, and finally extract the signal with those key 

operation cycles.    

To illustrate the performance of the TSA-spectrum, we present two examples: (A) noisy sequence 

with single period and (B) noisy sequence with compound periods.  

A. Noisy sequence with single period  

Let  ̂  { ̂ |             } be a finite-length discrete sequence sampled from a continuous 

noisy signal  ̂   ̂( )       (     )   ( ) with the sampling frequency     , where  ( ) 

is a white noise term satisfying  [ ( )]    and  [  ( )]   . The TSA-spectrum of  ̂  for two 

cases specified as (a)      ,      , and (b)      ,         is illustrated in Fig. S2. On 

one hand, the TSA-spectrum of white noise with the finite length   will increase at the speed of 

  √⌊   ⌋. On the other hand, although the magnitude of the periodic term is much smaller than that 

of the noise term, a series of obvious peaks can be observed when the operation cycle is an integral 

multiple of  . The difference between Fig. S2(a) and Fig. S2(b) lies in whether or not the decimal 

part   of   is zero. According to Proposition 2, when    ,    (    ) is equivalent to the 

smoothing-filtered result of    obtained from a moving average filter with the length of     . As a 

result, the value of the TSA-spectrum at     is smaller than that of      and even smaller 

than that of     .  

 

Fig. S2 The TSA-spectrum of  ̂  with 100,000 data points. (a)      ,      , and (b) 

     ,        .  

B. Noisy sequence with compound periods 

Let  ̂  { ̂ |             } be a finite-length discrete sequence sampled from a continuous 

noisy signal  ̂   ̂( )        (      )        (      )   ( ) with the sampling frequency 

    , were  ( ) is the white noise term. Given          ,       , and       , the 

TSA-spectrum of  ̂  with 100,000 data points is illustrated in Fig. S3. Fig. S3 shows that the peaks 

are located at (                                  ). Since there are two periodic components 

in  ̂ , there should be two groups of peaks in the TSA-spectrum. Let    (            ) and 

(𝑎) (𝑏) 
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   (            ) be the sets of operation cycles at the peaks caused by these two periodic 

components, respectively. Since (     )     and [     ]        (     )     . the 

TSA-spectrum shows a major period of 300, wherein the value of the TSA-spectrum becomes larger.   

 

Fig. S3 The TSA-spectrum of  ̂  with 100,000 data points, given          ,       , and 

      .  

The TSA-spectrum is elaborated upon as a tool adept at discerning hidden periods within a time 

series. For signals that exhibit changing periodicities, the TSA-spectrum will manifest multiple 

distinct peaks, representing these dynamic periodic components. Specifically, in the context of 

feature extraction for such signals, the key parameters to consider would be the significant peaks in 

the TSA-spectrum, representing the varied periodicities inherent in the signal. 

The incorporation of Super-Resolution Analysis is grounded in enhancing the resolution and 

precision of the TSA-spectrum. The core value of the TSA-spectrum lies in its ability to detect 

nuanced periodicities, even in noise-rich environments. Super-Resolution Analysis bolsters this 

capability by offering a more refined resolution, making it feasible to differentiate between 

closely-spaced periodicities and further augmenting the TSA's efficacy in unearthing concealed 

periodic patterns amidst noise. 

Super resolution analysis (SRA) 

According to Proposition 2, we can enhance the performance of the TSA-spectrum by minimizing the 

smoothing effect length (SEL). In this section, we propose a super-resolution analysis (SRA) 

achieved by increasing the sampling frequency (decreasing the sampling interval) through 

interpolation. SRA can be useful for reducing the SEL, so that the extracted signal is able to keep its 

original waveform. This is addressed by the following example. First, let 

 ̂  { ̂ |             } be a finite-length discrete sequence sampled from a continuous noisy 

signal  ̂   ̂( )       (     )   ( ) with the sampling frequency     .  ( ) is a white 

noise term. Second, let  ̂   be the linear interpolation of  ̂  with the equivalent sampling 
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frequency       . Finally, according to Definition 3, the SEL of    ( ̂   ⌊  ⌋) becomes 1/s 

of that of    ( ̂  ⌊ ⌋).  

Taking          as an example, the TSA-spectrum of  ̂  with 100,000 data points is illustrated 

in Fig. S4(a). In contrast, the TSA-spectrum of  ̂   with       is presented in Fig. S4(b). For the 

original  ̂  with     , the first cycle  =200 is hard to observe since the decimal part of   is 

0.33. When we apply SRA with      , Fig. S4(b) shows that the first peak of the TSA-spectrum is 

located at 200.3, which is much closer than that of  ̂  without SRA.  

  

Fig. S4  The TSA-spectrum of  ̂  given         . (a)      and (b)       

Proof of the Propositions 1-3 

First, we prove Lemmas 1-2.  

Lemma #1: Given        and (   )   , the remainder set of     divided by  , denoted 

as  (      )  {  |        (     )     }, is given as {         }.    

Proof:  

(1) We know that for all     , the remainder set of   divided by   contains   elements, given 

as  (    )  {         }.   

(2) There is a basic period for  (      ), such that  

     (   )       (    ),  

so  (      ) is determined only by the remainder set of {  |          }.  

(3) We can prove that when (   )   , we cannot find any two different integers     [   ]  

and     satisfying  

        (    ).  

Otherwise, let us suppose that there exist two different integers          [   ]  satisfying 

        (    ). Then, we get (   )      (    ). This indicates that (   )    is 

divisible by  . However, the considering (   )    and that   and   do not share any 

common divisor larger than 1, we have       (    ). This is impossible since     [   ] 

and    ,           (    ).  

(𝑎) (𝑏) 
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(4) By combining the previous results, we know that for every integer   [   ], we will have a 

different remainder    with      (     ), so there are   different remainders for {  |   

       } to be divided by  . Considering that there are, at most,   elements in the remainder set 

 (    ), we have  

 (      )   (    )  {         } 

Done.  

 

Lemma #2: Given        and (   )     , the remainder set of     divided by  , 

denoted as  (      )  {  |        (     )     }, is given as {            }.    

Proof:  

(1) We know that for all     , the remainder set of   divided by   contains   elements, given 

as  (    )  {         }.   

(2) There is a basic period for  (      ), such that 

     (   )       (    ),  

so  (      ) is determined only by the remainder set of {  |          }.  

(3) Since (   )     , we can rewrite   and   as       and      , where 

         and (     )   . Then, we get   

 (      )   (          )   (        )    

It can be interpreted that  (      )  can be given as  (        )  with each element 

multiplied by  . By using Lemma #1, we know that  (        )  {            }. Last, we 

have  

 (      )   (        )    {            }    {         (    ) }. 

Done.  

 

Second, we can prove Propositions 1-3 using Lemmas 1-2.  

Proposition #1: Let   {  |             } be a discrete sequence sampled from a continuous 

periodic signal    ( )   (    ) with the sampling frequency        , where    is the 

period of  ( ). If            and     and given the operation cycle      and    , 

with (   )   , we have the following result  

   (   )  [{
 

  
∑      

    

   

|           }]

  

 

where              . [{ }]  represents a copy of vector { } with   times.     

Proof:  

We prove this proposition within two parts: (1) (   )     ; (2) (   )     .  

Part 1: 

For the case when (   )   , we need to prove that 

   (   )  {
 

 
∑   

   

   

|             } 
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Since  ( )   (    ) and           , we know that          for all     .  

By using Lemma #1, we know that when given   with (   )   , the remainder set of {   |  

  } divided by   is given as {         }, which is also the remainder set of {     |    } 

for              . Since    , we know that   ⌊   ⌋ is sufficiently large. As a result, the 

occurrence frequency of each remainder in {         } is the same. We have    

 

   
∑     

   

   

 
 

   
(

 

   
∑   

   

   

)  
 

 
∑   

   

   

 

Part 2:  

When (   )     , we can rewrite   as      , where        and (    )   .  

Then, we can then divide  (    )  {           } into   groups {  |             } , 

with the  th group given as:  

   {                  } 

By using Lemma #2, we know that when given   with (   )     , the remainder set of 

{   |    }  divided by   is   . Generally, for              , the remainder set of 

{     |    } divided by   is   . Now, we can also divide    into   groups according to 

its remainder divided by  . The  th group related to    is given as   :  

   {     |    }             

Since    , this indicates that   ⌊   ⌋  is sufficiently large. As a result, the occurrence 

frequency of each    is the same, and all elements in    share the same occurrence frequency.  

Now, let us focus on the first     elements of    (   ). We have   

 

 
∑     

   

   

 
 

 
(

 

    
∑      

    

   

)  
 

  
∑      

    

   

             

The first   elements of    (   ) can be written as   

{
 

  
∑     

  

   

|            } 

Furthermore, according to the congruence properties stating that for       , if     (    ), 

we have         (    ) satisfied for all    . It can be proven that the remainder set of 

      for     divided by   also equals   . As a result, it can be verified that there is a period 

of   in    (   ).  

 

 
∑        

   

   

 
 

 
(

 

    
∑         

    

   

)  
 

  
∑      

    

   

              

This indicates that    (   ) consists of a number of    copies of the first   elements of 

   (   ), which can be written as  
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   (   )  [{
 

  
∑      

    

   

|           }]

  

 

Done.  

 

Proposition #2: Let   {  |             } be a discrete sequence sampled from a continuous 

periodic signal    ( )   (    ) with the sampling frequency        , where    is the 

period of  ( ) . Assuming that          , where      and      , and given the 

operation cycle    , we have the following result  

   (   )  { ̃ |           } 
where  ̃  { ̃ |             } is the discrete sequence sampled from a filtered result of  ( ) 

by a moving average filter with the window length of ⌊   ⌋   .   

 

Proof:  

First, let  ̃  { ̃ |             } be the discrete sequence sampled from a filtered result of 

 ( ) by a moving average filter with the window length ⌊   ⌋   , given the sampling frequency 

       , over a sampling duration of     seconds. We have   

 ̃  
 

 
∑  ((    )  )   

     

where   ⌊   ⌋,         ⌊     ⌋ is the decimal part of    divided by   .  

Second, since          , we have  ( )   (    )     (     )     , which yields 

 (    )   (            )   ((     )    )     ((       )    )  

       ((    )    )   ((    )    ) 

Finally, taking    , the  th element of    (   ) is given as  

 

   
∑      

   
    

 

   
∑  ((    )    )   

     ̃   

Done.  

 

Proposition #3: Given  ̂  { ̂ |             } as a finite-length discrete sequence sampled 

from a continuous noisy signal  ̂   ̂( )   ( )   ( ) with the sampling frequency        , 
where  ( ) is a continuous periodic signal with period    and  ( ) is a noise term satisfying 

 [ ( )]    and  [  ( )]    , when given the operation cycle  , we have the following result   

1.  [   ( ̂  )     (   )]  { |             } 

2.  [(   ( ̂  )     (   ))
 

]  {
 

 
  |             } 

where   ⌊   ⌋.  

 

Proof:   
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According to Definition 1, we have  

   ( ̂  )     (   )  {
 

   
∑( ̂          )

   

   

|             }

 {
 

   
∑     

   

   

|             } 

Considering that  [ ( )]    and  [  ( )]    , we have  [  ]   ,  [    ]    and 

 [  
 ]   . Then, we have  

 [
 

   
∑      

   
   ]  

 

   
∑  [     ]

   
       

 [(
 

   
∑      

   
   )

 

]  
 

    
 [∑      

    
   ]  

 

 
    

Done.  

 


