Electronic supplementary materials

For https://doi.org/10.1631/jzus.A2300365

Gas film/regenerative composite cooling characteristics of the liquid oxygen/liquid methane (LOX/LCH4) rocket engine

Xinlin LIU, Jun SUN, Zhuohang JIANG, Qinglian LI, Peng CHENG, Jie SONG

Science and Technology on Scramjet Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

S1 Schematic diagram of thrust chamber heat transfer process

Fig. S1 Schematic diagram of thrust chamber heat transfer process

S2 Expression of semi-empirical Bartz formula

$$
h_{g} = \left(\frac{A_{t}}{A}\right)^{0.9} \sigma_{cf} \times \left[\frac{0.026}{D_{t}^{0.2}} \left(\frac{\mu_{g}^{0.2} c_{p,g}}{Pr^{0.6}}\right)_{ns} \left(\frac{(p_{c})_{ns}}{c^{*}}\right)^{0.8} \left(\frac{D_{t}}{R}\right)^{0.1}\right],\tag{S1}
$$

$$
n_g = (\frac{1}{A})^{0} \sigma_{cf} \wedge [\frac{1}{D_t^{0.2}} (\frac{1}{P r^{0.6}})^{n_s} (\frac{1}{c^*})^{0} (\frac{1}{R})^{1},
$$
\n
$$
\sigma_{cf} = (1 + \frac{\gamma - 1}{2} M a_x^2)^{-0.12} \times [\frac{1}{2} \frac{T_{wg}}{(T_c)_{ns}} (1 + \frac{\gamma - 1}{2} M a_x^2) + \frac{1}{2}]^{-0.68}.
$$
\n(S2)

 D_t is the throat diameter. μ_g is the gas dynamic viscosity. $c_{p,g}$ is the gas specific heat at constant pressure. *Pr* is the gas Prandtl number. c^* is the gas characteristic velocity. σ_{cf} is the correction factor for property variations across the boundary layer. *R* is the radius of curvature of nozzle contour at throat. A_t is the throat area of the nozzle and A is the area under consideration along chamber axis. T_{wg} is the gas side wall temperature. T_c and p_c are respectively combustion temperature and pressure. The subscript 'ns' represents the stagnation parameter. *γ* is the specific heat ratio of the gas and *Ma^x* denotes the local Mach number.

S3 Expression of dimensionless numbers

$$
Bo = \frac{q}{G_{\rm f} h_{\rm fg}}.\tag{S3}
$$

$$
We = \frac{G_f^2 D_h}{\rho_{\text{lp},f} \sigma}.
$$
\n(S4)

$$
K_{\rm p} = \frac{p}{\sigma \, g \, (\rho_{\rm lp,f} - \rho_{\rm gp,f})^{0.5}}.
$$
 (S5)

$$
X = \left(\frac{1-x}{x}\right)^{0.9} \left(\frac{\rho_{\rm gp, f}}{\rho_{\rm lp, f}}\right)^{0.5} \left(\frac{\mu_{\rm gp, f}}{\mu_{\rm lp, f}}\right)^{0.1}.\tag{S6}
$$

 G_f is the coolant mass flow rate. D_h is the hydraulic diameter of cooling channel. σ' is the coefficient of surface tension. *x* is the mass quality. h_{fg} and *q* are respectively the coolant latent heat of evaporation and heat flux. *μ*, *ρ* and *p* are respectively dynamic viscosity, density and pressure. And the subscript 'gp', 'lp', 'f' represent gas-phase, liquid-phase and coolant, respectively.

S4 Expression of frictional pressure drop and acceleration pressure drop

(1) Single phase calculation

The calculation formula for frictional and acceleration pressure drop in the single-phase region is as follows:

$$
\Delta p_{\text{fr}} = f_{\text{sp}} \cdot \frac{G_{\text{f,sp}}^2}{2 \rho_{\text{sp}} D_{\text{h}}} \cdot L. \tag{S7}
$$

$$
\Delta p_{\rm ac} = \frac{G_{\rm f,sp}^2}{2\rho_{\rm spin}} \left(\frac{\rho_{\rm sp,in}}{\rho_{\rm sp,out}} - 1\right). \tag{S8}
$$

In the Eq. $(S7)$ and $(S8)$, the subscript 'sp' represents the single-phase parameters. $G_{f,sp}$ is the mass flow rate of the single-phase coolant. ρ_{sp} is the average density of the single-phase coolant, and $\rho_{sp,in}$ and $\rho_{sp,out}$ represent the inlet and outlet densities of the coolant, respectively. D_h is the hydraulic diameter of the coolant channel, and L is the length of the coolant channel. f_{sp} is the single-phase friction factor, which can be determined using the Colebrook formula:

$$
\frac{1}{\sqrt{f_{\rm sp}}} = -2\log\left(\frac{Ra/D_{\rm h}}{3.7} + \frac{2.51}{Re\sqrt{f_{\rm sp}}}\right).
$$
 (S9)

Where the *Ra* is the regenerative cooling channel surface roughness.

(2) Two-phase calculation

In the two-phase region, a homogeneous model is used to calculate the frictional pressure drop:

$$
\Delta p_{\rm fr} = f_{\rm tp} \frac{G_{\rm f,tp}^2}{2\rho_{\rm tp}} \frac{L}{D_{\rm h}}.
$$
\n(S10)

In the Eq. (S10), the subscript 'tp' represents the two-phase parameters. $G_{f,tp}$ is the mass flow rate of the two-phase coolant, ρ_{tp} is the average density of the two-phase coolant, and f_{tp} is the two-phase friction factor. The calculation formula for ρ_{tp} and f_{tp} is as follows.

$$
\rho_{\rm tp} = \frac{\rho_{\rm lp} \rho_{\rm gp}}{\rho_{\rm gp} (1 - x) + \rho_{\rm lp} x}.
$$
\n(S11)

$$
\frac{1}{\sqrt{f_{\text{tp}}}} = -2\log\left(\frac{Ra/D_{\text{h}}}{3.7} + \frac{2.51}{Re\sqrt{f_{\text{tp}}}}\right).
$$
(S12)

Where the ρ_{lp} and ρ_{gp} represent the densities of the liquid phase and gas phase coolant in the two-phase region, respectively. *x* is the coolant dryness fraction, and *Ra* is the regenerative cooling channel surface roughness.

The acceleration pressure drop can be expressed as follows:

$$
\Delta p_{ac} = G_{f,tp}^2 L \left[\frac{(1-x)^2}{\rho_{lp}(1-\varepsilon')} + \frac{x^2}{\rho_{gp} \varepsilon'} \right].
$$
 (S13)

Where the ε' is void fraction. The calculation formula for ε' is as follows:

$$
\varepsilon' = \frac{\rho_{\rm lp} / \rho_{\rm gp}}{1 / x + (\rho_{\rm lp} / \rho_{\rm gp} - 1)}.
$$
 (S14)

S5 Different gas film mass flow comparison schemes

Table S1 Different gas film mass flow comparison schemes

S6 Comparison of different gas film introduction positions

Table S2 Comparison of different gas film introduction positions

S7 Comparison of double row hole schemes

S8 Nomenclature

