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Section S1 

S1.1 Heat conduction theory 

 

The internal heat transfer process of a SCCDs can be calculated using the Fourier differential equation for 

thermal conductivity. Assuming that the temperature distribution T (℃) of a SCCDs is a function of time and 

space, denoted by (x, y, z, t), then the heat transfer differential equation is represented by Eq. (S1). 
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where ρ is the density of the material (kg/m³), c is the specific heat capacity (J/kg/℃), k  is the thermal 

conductivity (W/m/K). 

 

S1.2 Boundary conditions and initial conditions 

 

As the structural temperature field of an operational SCCDs is being analyzed, it is reasonable to assume 

that the structure does not have an internal heat source. The boundary conditions required to solve Eq. (S1) can 

be determined using the following equation: 
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where lx, ly, and lz represent the directional cosines in the x, y, and z directions, respectively. Meanwhile, q refers 

to the heat flow density at the structure's boundary, which changes over time t. 
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Thermal exchange between the SCCDs and its surrounding environment is primarily influenced by 

convective, long-wave radiative, and short-wave radiative heat exchange. This phenomenon can be quantified 

using the following equation: 

 

c r s( ) ( ) ( ) ( ).q t q t q t q t                                (S3) 

 

where qc(t) is the heat flow density of convective heat transfer, qr(t) is the heat flow density of long-wave 

radiation heat transfer, and qs(t) is the heat flow density of short-wave radiation heat transfer. 

The formula for the convective heat transfer density qc(t) is shown in Eq. (S4) and the value is determined 

by the temperature difference between the surface of the structure and the surrounding environment. 
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where Ts(t) represents the surface temperature of the structure, Ta(t) represents the ambient temperature, and the 

surface heat exchange coefficient, hc (m/s), is related to the orientation of the structure and the wind speed on its 

surface. Typically, hc is calculated using empirical formulas, but in this study, we corrected the parameters based 

on references and measured data. 

For long-wave radiative heat transfer, calculations can be based on the following equation according to the 

Stefan-Boltzmann law. 
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where Am represents the coefficient of long-wave radiation, C0 is the Stefan-Boltzmann constant, 5.67×10
-8

 

W·m
-2

·K
-4

.
 

The thermal environment and SCCDs are depicted in Fig. S1. The relationship between the total shortwave 

radiation intensity and the shortwave radiation heat exchange value can be expressed by Eq. (S6), and it is 

generally considered to include direct solar radiation, scattering from the sky, and reflection from the ground, 

which can be calculated by Eq. (S7). 
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where As is the structure surface of the short-wave radiation absorption rate, IT is the structure surface by the total 

intensity of radiation, IB and ID indicate the horizontal surface direct solar radiation intensity and horizontal 

surface solar scattering radiation intensity respectively, re represents the surface reflectivity, β represents the 

angle between the inclined surface and the horizontal plane, θ represents the angle of incidence of the sun, h 

represents the solar altitude angle. 

 

S1.3 Calculation of shadow length caused by flange plate 

 

Under actual sunlight conditions, the radiation received by bridge structures is affected by the structure 

itself or surrounding objects blocking the radiation. Therefore, it is necessary to consider the shading effect in 

numerical simulations. The shadow lengths of the steel beam web (d) and bottom flange (dbot) caused by shading 



3 

of the cantilever part of the SCCDs can be calculated using the Eq. (S8) and Eq. (S9) ,respectively. 
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where wtop is the length of the cantilever section of the bridge deck flange, where dweb is the depth of the web, γs 

represents the solar azimuth angle, and γ denotes the angle formed by the normal direction of the inclined surface 

and the southward direction. 

 

 

Section S2 

Step 1: Using the Hebelt transform on the temperature time series T(t) to derive the instantaneous amplitude 

W(t) and the instantaneous phase ψ(t). 
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where ( )T t  is the Hebelt transformed form of the original sequence T(t). 

 

Step 2: Calculate the instantaneous amplitude W(t) for the local maximum value W({max}) and the 

minimum value W({min}) respectively. 

Step 3: Based on the curves β1(t) and β2(t) obtained from the interpolation of the set of very large and very 

small points, the instantaneous mean w1(t) and the instantaneous envelope w2(t) are derived, and their 

corresponding mathematical equations are shown below: 
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Step 4: Interpolate ' 2
1 min min({ }) ({ })t W t  and ' 2

2 max max({ }) ({ })t W t  to estimate 1( )x t and 2 ( )x t , 

respectively, and the instantaneous frequencies 
'
1( )t  and 

'
2 ( )t  are calculated as follows: 
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Step 5: Calculate the local cut-off frequency 
'
bis ( )t  from Eq. (S16). 
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Step 6: After deriving the local cut-off frequency bis ( )t  , the signal S(t) is calculated according to Eq. 

(S17). A time-varying filter is constructed by using the local extrema of S(t) as nodes, and B-sample interpolation 

is employed to filter the original time series T(t) and generate the filtering result c
1
(t). 
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Step 7: Define a stopping criterion such that T(t) is considered an IMF component when the stopping 

condition θ(t) ≤ ɛ is satisfied. Otherwise, let T(t)-c
1
(t) be the new input signal and repeat steps one to seven until 

the stopping criterion is satisfied. The stopping criterion θ(t) is calculated as follows: 
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where BLoughlin(t) is the Loughlin instantaneous bandwidth and ψavg(t) is the weighted mean instantaneous 

frequency. 

Ultimately, the original time series T(t) is decomposed by TVFEMD to obtain J IMF components [c
1
(t), 

c
2
(t),  , c

J
(t)], and satisfies the following relation: 
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where: ci
(t) is the i-th IMF component and the last term is referred to as the residual term. 

 

 

Section S3 

Step 1: Define the algorithm parameters m and r, where m is the length of the comparison vector and r 

denotes the metric value for determining the similarity. IMF is constructed as an m-dimensional vector, i.e. 
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where i  = 1, 2, ..., N-m+1 and N denotes the total number of samples. 

Step 2: The distance between X(i) and X(j) is defined as d[X(i), X(j)], which corresponds to the absolute 

value of the maximum difference in the elements, where i in Eq. (S21) is not equal to j. 
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Step 3: Count the number of dm[X(i), X(j)] < r in all i  values and write down Ai, then increase the number 

of dimensions to m+1, repeat the above steps and count the number of dm+1[X(i),X(j)] < r (m+1 dimensions) in 

all i  values and write down Bi. The sample entropy result can then be calculated according to the following 

equation. 
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where 1( )mB r  and ( )mA r  are each calculated as follows: 
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Section S4 

After initialization, the weak learner needs to be trained iteratively, and for round t iteration, the objective 

function Eq. (S25) needs to be solved and the residual ri
(t)

 needs to be calculated. 
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where l[yi, ŷi
(t-1)

+ft(xi)] is a loss function that measures the predicted value of ŷi
(t-1)

 and the fit of the current weak 

learner ft(xi) to the true value of yi after round t-1, Ω(ht) is a regularization term that is used to limit the 

complexity of the weak learner and prevent over-fitting. 

A decision tree is trained using a greedy algorithm. First, a feature and split point are selected, and the 

dataset is divided into left and right subtrees. The predicted value of each leaf node is calculated as the average 

of the residuals of all samples in that node. Then, the GGain is calculated, and a new tree is generated by selecting 

the feature and split point with the greatest gain. 
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where I denotes the set of samples at the current node, ri denotes the current residual, IL and IR denote the set of 

samples in the left and right subtrees respectively, wi is the weight of sample I, and λ and γ are the regularization 

parameters to limit the complexity of the decision tree respectively. 

After training the t-th weak learner, the predicted values of the model are updated as: 
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where η is the learning rate and represents the degree of contribution of each weak learner. 

The above steps are repeated until the tree reaches its maximum depth or no further gain is possible, and all 

the weak learners are combined into a powerful integrated model for making predictions. Specifically, we weight 

the predicted values of the M weak learners to sum up as the final prediction: 
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The loss function is complex and cannot be directly optimized, so a Taylor expansion is used to 

approximate the objective function. This approximation allows the gradient and second-order derivative of the 

objective function to be calculated, which updates the weights of the decision tree. 
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where: gi and hi denote the first and second order derivatives of the loss function at the sample xi, respectively, 

ft-1(xi) denotes the weighted sum of the predicted values of all trees for the i -th sample in the previous t-1 

iterations, wj denotes the weight of the j-th leaf node of the kth tree, γ and λ denote the hyperparameters of the 

regularization term, respectively. 

By letting Eq. (S31), Eq. (S32) the final objective function is transformed into a quadratic function as 

shown in Eq. (S33): 
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Therefore, the best wj and the best objective reduction Oobj* are derived as shown in Eqs. (S34) and (S35), 

respectively: 
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Feature importance can be scored based on the number of splits in the decision tree and the split gain. Each 

split of the decision tree selects the best feature and calculates the split gain of that feature, which reflects its 

significance for the sample. We can then accumulate the split gain of each feature across all decision trees to 

evaluate the importance of the i-th feature. 
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where T denotes the number of decision trees, ωt is the weight of the t-th decision tree, and 1{ft=i} is an indicator 

function where 1{ft=i}=1 if the t-th decision tree chooses feature i  as the splitting feature and 0 otherwise. 
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Fig. S1  Relative position of the sun to a horizontal plane on the ground. 

 

 

           

(a)                                          (b) 

Fig. S2  FE model calculation results verification: (a) winter (2013.01.01~2013.01.04); (b) summer (2013.08.10~2013.8.13) 

 

 

Table S1  Boundary conditions and calculation parameters 

Category Type of radiation 
hc 

(m/s) 

ρ 

(kg/m³) 

k 

(W/m/K) 

c 

(J/kg/℃) 
Am As 

Asphalt concrete Rd + Rs 14.33 2360 1.05 1168 0.95 0.9 

Side surface of bridge deck Rd + Rs + Rr 11.33 
2549 1.70 920 0.9 0.7 

Underside of bridge deck Rr 9.83 

Side of steel beam (Rd) + Rs + Rr 13.29 

7850 53.2 460 0.6 0.6 Underside of steel beam Rr 11.05 

Top surface of lower flange of steel beam (Rd) + (Rs) 11.05 
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Table S2  Hyperparameter settings for each ML model after optimization 

Model Hyperparameters Original Timelag-based EMD-based TVFEM-based 

RF 

(n_estimators, max_features 

min_samples_split, 

min_samples_leaf,) 

(566, none, 5, 3) (769, none, 4, 5) (646, sqrt, 5, 2) (54, none, 5, 2) 

SVR (kernel, C, gamma, epsilon) 
(rbf, 142, 0.0008, 

0.002) 

(rbf, 83, 0.04, 

0.04) 

(rbf, 142, 0.008, 

0.02) 

(rbf, 142, 0.0008, 

0.002) 

MLP 

(hidden_layer_sizes, alpha, 

max_iter, learning_rate, 

activation, batch_size, 

learning_rate_init, solver) 

[100, 3, 500, 

invscaling, relu, 

64, 0.01, adam] 

[100, 2, 500, 

invscaling, relu, 

64, 0.01, adam] 

[(50, 50), 5.8, 

1000, constant, 

relu, 256, 0.02, 

adam] 

[100, 4.1, 1000, 

constant, relu, 

256, 0.01, sgd] 

GBR 

(n_estimators, 

min_samples_split, 

min_samples_leaf, max_depth, 

learning_rate) 

(150, 14, 3, 6, 

0.1) 

(150, 14, 3, 6, 

0.1) 

(150, 14, 3, 6, 

0.1) 

(150, 14, 3, 6, 

0.1) 

XGBoost 

(colsample_bytree, gamma, 

learning_rate, max_depth, 

min_child_weight, n_estimators, 

reg_alpha, reg_lambda, 

subsample) 

(0.9, 7.0, 0.4, 5, 

4, 219, 0.0006, 

3.7, 0.6) 

(0.8, 8.8, 0.15, 

10, 9, 72, 1.4, 

3.5, 0.6) 

(0.5, 9.2, 0.05, 5, 

3, 459, 1.6, 7.5, 

0.5) 

(0.7, 9.4, 0.08, 3, 

8, 379, 4.6, 5.3, 

0.7) 

 

 

Table S3  Comparison of single model prediction performance 

Model 
Original Timelag-based EMD-based TVFEMD-based 

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE 

RF 0.89 2.11 2.66 0.95 1.40 1.79 0.93 1.71 2.10 0.97 1.00 1.26 

SVR 0.86 2.27 2.86 0.94 1.40 1.84 0.93 1.58 2.11 0.95 1.45 1.80 

MLP 0.87 2.19 2.75 0.94 1.63 2.09 0.95 1.28 1.70 0.97 1.13 1.42 

GBR 0.88 2.16 2.68 0.95 1.34 1.68 0.96 1.10 1.46 0.97 0.98 1.23 

XGBoost 0.89 2.06 2.54 0.95 1.32 1.72 0.97 1.07 1.37 0.97 0.96 1.24 

 

 

Table S4  Stacking integrated model prediction performance 

Model 
Original Timelag-based EMD-based TVFEMD-based 

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE 

Stacking 0.91 1.85 2.34 0.96 1.20 1.51 0.97 1.03 1.34 0.98 0.79 1.01 
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Table S5  Relative error calculation results 

 
EMD-based TVFEMD-based 

Q75% Median  Q25% Average IQR Q75% Median Q25% Average IQR 

RF 20.23 6.73 0.21 15.37 20.02 5.74 0.48 -4.94 0.35 10.68 

SVR 1.15 -4.3 -10.96 -3.68 12.11 -0.42 -5.70 -17.24 -12.37 16.82 

MLP 7.96 0.86 -3.94 3.39 11.9 2.56 -2.17 -7.13 -2.12 9.69 

GBR 0.56 -4.58 -10.57 -4.57 11.13 0.13 -4.36 -8.87 -3.43 9.00 

XGBoost 1.99 -2.72 -9.22 -3.7 11.21 4.60 -0.72 -6.37 -0.51 10.97 

Stacking 5.23 -0.46 -5.7 0.89 10.93 3.80 -0.58 -4.68 0.49 8.48 

 

 

Table S6  Parameter estimation and goodness-of-fit test results for the temperature distribution model 

 Actual value EMD-Stacking TVFEMD-Stacking 

i wi μi σi wi
 μi σi wi μi σi 

1 0.55 15.27 15.39 0.18 27.69 17.64 0.63 15.54 18.31 

2 0.25 27.06 21.05 0.24 8.15 6.42 0.19 27.80 13.76 

3 0.20 7.38 6.38 0.58 15.99 15.64 0.18 7.33 4.74 

Results Adopted Adopted Adopted 

RMSE(PDF) 0.0024 0.0048 0.0038 

RMSE(CDF) 0.0043 0.0150 0.0086 

 

 


