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S1  Methodology 

S1.1  Data Embedding Layer 

The Informer model does not have an RNN-like 

recurrent architecture. To exploit the timing infor-

mation, the first layer in the Informer model is chosen 

to be the positional embedding. The specific opera-

tion is shown in the formulas. 
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where pos  represents the position (data order) and i = 

1, 2, …, mod / 2eld  indicates the dimension. 

In addition, the model introduces temporal em-

bedding and token embedding. Temporal embedding is a 

method used to encode temporal information into vector 

representations. This inclusion enables the model to 

concurrently discern the correlations between temporal 

and other features, thereby gaining a deeper under-

standing of sequence data dynamics. Token embedding 

serves as a technique for encoding symbols within the 

input data as vector representations. Different symbols 

may have variable associations and levels of signifi-

cance among them. By integrating symbol embeddings 

into the model, it can more effectively grasp and lever-

age these associations and significance levels. 

Consequently, the data embedding component 

within Informer can be formulated as follows: 

 

DataEmbed PosEmbed(input)

TokenEmbed(input) TemEmbed(input)

 


                 (S3) 

 

S1.2  Data Embedding Layer 

The architecture of the multi-attention mecha-

nism comprises several self-attention layers (Fig. S3). 

Upon reaching the decoding layer, the query (Q), key 

(K), and value (V) undergo initial mapping via vari-

ous linear transformations. These mapped values are 

then concatenated to create the inputs for the mul-

ti-head attention. Subsequently, additional linear 

transformations are applied to yield the final output. 

Through this multi-head attention mechanism, the 

model gains the ability to concurrently attend to dis-

tinct segments of the input data, thereby augmenting 

the model's expressive capacity. 

 

S2  Dataset establishment 

S2.1  Input parameter selection 

TBM parameters included earth pressure, rota-

tion speed, penetration rate, torque, thrust force, and 

boring speed. The data were exported from the 

Guangzhou Metro Big Data platform as an excel file. 

A comprehensive literature review was conducted to 

elucidate the multitude of factors that affect TBM 

boring performance. Table S2 presents the pertinent 

parameters used by researchers in the prediction of 

TBM boring performance. 

In light of the variety of input parameters se-

lected by researchers, in this study we incorporated 
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stratum information as an additional input to the 

model during the excavation process. Our aim was to 

enhance the model's adaptability to diverse strata 

conditions and enhance its generalization capacity. 

The thrust force exerted by the TBM on the cutter as it 

traverses the strata is recognized as a representation of 

the TBM's excavation performance and was desig-

nated as the chosen output parameter. Fig. S5 shows 

the parameters selected for consideration in the 

model’s development. 

Geological parameters included several signifi-

cant attributes, namely uniaxial compressive strength 

(UCS), shear wave velocity, surrounding rock grade, 

liquid limit, plastic limit, moisture content, wet den-

sity, and void ratio. UCS, shear wave velocity, and 

surrounding rock grade are recognized as pivotal 

indicators, each potentially exerting distinct effects on 

TBM excavation. Consequently, we selected these 

parameters as our input variables. It is important to 

note that the data for these parameters were obtained 

through comprehensive testing procedures conducted 

by the project constructor following stratum sam-

pling. 

Unlike in other studies, we chose to include 

some less commonly used parameters, namely, liquid 

limit, plastic limit, moisture content, wet density, and 

void ratio, as input variables. These parameters di-

rectly serve as indicators reflecting the physical and 

mechanical characteristics of the soil. Soils charac-

terized by elevated liquid limit values typically ex-

hibit heightened plasticity and fluidity, which can 

potentially result in mud generation during the boring 

process, consequently impacting TBM operations. 

The plastic limit of the soil may contribute to residue 

buildup within the cutter and guidance system, 

thereby affecting the TBM's excavation progress. Soil 

moisture content exerts a significant influence on its 

mechanical properties, including shear strength and 

compaction behavior. Excessive moisture content 

may render the soil muddy, thereby increasing the 

cutting resistance experienced by the TBM and di-

minishing its excavation velocity. Conversely, insuf-

ficient water content may render the soil dry and 

resistant to cutting, hindering TBM efficiency. Higher 

wet densities may render the soil harder, posing 

challenges for TBM cutting and potentially affecting 

excavation speeds. Conversely, lower wet densities 

may increase cutting resistance. Elevated void ratios 

may enhance soil compressibility but can also lead to 

mud and water flow during tunneling, adversely im-

pacting TBM cutting operations. This rationale un-

derpinned our selection of these parameters as inputs 

for our model. 

 

S2.2  Data standardization 

In light of the different scales within each data 

sample, it is imperative to standardize the data, 

thereby ensuring their uniform comparability and 

processing. To this end, the Z-Score standardization 

method was used, equating the feature means to 0 and 

the standard deviations to 1. The formula for this 

standardization method is shown below: 
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where μ and σ represent the mean and standard devi-

ation, respectively, of all data. 

 

S2.3  Data segmentation 

The partitioning of a dataset constitutes a pivotal 

aspect of machine learning, demanding a suitable 

approach to ensure robust training of the model. In 

this study, dataset partitioning was executed via a 

sliding window technique, a common practice in time 

series models. This approach entails configuring the 

input sequence length as 8, the label sequence length 

as 1, and maintaining the prediction sequence length 

at 1. Consequently, the model operates on successive 

8-minute time windows as input, accompanied by 

contiguous 1-minute time windows as target labels, 

facilitating predictions for the subsequent 1 minute. 

This arrangement empowers the model to assimilate 

insights from the preceding 8 minutes of thrust force 

data, thereby forecasting trends for the ensuing 1 

minute. 

The dataset was fragmented into distinct se-

quences, effectively shaping the dataset. Subse-

quently, 70% of the data were allocated for training, 

20% for the test set, and the remaining 10% for the 

validation set. The exact number of data sets is shown 

in Table S3. 

 

S3  Results analysis 
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S3.1  Model evaluation metrics 

Mean Squared Error (MSE) and Coefficient of 

Determination (R
2
) served as the evaluation metrics 

for the model. The MSE quantifies the average of the 

squared differences between the model's predicted 

values and the true values. A smaller MSE indicates a 

closer alignment between the model's predictions and 

the actual values. R
2
, on the other hand, gauges the 

relationship between the model's predictions and the 

true values. R
2
 values range from 0 to 1, with higher 

values indicating stronger predictive capabilities of 

the model. The expressions are provided below: 
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where iY , ˆ
iY , and 

iY  are the true value, prediction of 

the i-th sample, and the mean value of all data, re-

spectively. 

Moreover, for the comparative assessment of the 

performance of various models, we introduced a 

novel index termed the "a20-index," which is re-

placed by the symbol a in the following. (Asteris et al., 

2021a; Asteris et al., 2021b) designed to enhance the 

evaluation of the performance of different models. 

The expression is provided below: 

 


m

a
M

                        (S7) 

where M denotes the sample size of the dataset, m 

refers to the count of samples where the ratio of ob-

served values to predicted values lies within the range 

of 0.80 to 1.20. In the case of an ideal predictive 

model, the a20 index should attain a value of 1. 

 

S3.2  Model optimization 

The main parameters governing the predictive 

efficacy of the Informer model include decoder depth, 

encoder depth, and attention mechanism. The model 

uses an iterative methodology, manipulating the var-

iables of two parameters while observing the resultant 

changes in another parameter. 

Fig. S6 depicts the LOSS value across various 

hyperparameters. Based on the hyperparameters 

corresponding to the minimum error value, the opti-

mal model hyperparameters were identified as fol-

lows: encoder depth of 5, decoder depth of 1, and the 

use of the Full Attention mechanism. The specific 

model hyperparameters are detailed in Table S4. 

It is of utmost importance to implement 

measures to prevent the occurrence of model overfit-

ting (Asteris et al., 2019; Armaghani and Asteris, 

2021). Overfitting occurs when a machine learning 

model excessively learns from the training data, 

capturing noise or random fluctuations as if they were 

meaningful patterns. This can lead to poor perfor-

mance when the model is applied to new data. To 

mitigate overfitting, we incorporated the neural net-

work regularization technique known as ‘dropout’ 

into our model. Dropout serves as a mechanism to 

mitigate overfitting by stochastically nullifying the 

output of a subset of neurons during the neural net-

work's training process. Furthermore, we used the 

Early Stopping technique as an additional measure. 

This method entails continual evaluation of the mod-

el's performance on a validation set throughout the 

neural network training process, ceasing training once 

the model's performance no longer shows improve-

ment, thereby safeguarding against overfitting. 

 

S4  Discussion 

S4.1  Input parameter selection 

Input parameters characterized by substantial 

correlations might not necessarily contribute to en-

hanced model performance. This rationale under-

pinned our use of Pearson's analysis, as detailed in 

Section 3.2.3, to selectively remove input parameters 

featuring correlation coefficients exceeding 0.8. 

Nevertheless, the model's input parameters are 

limited to eight. Hence, the appropriateness of the 

stringency of excluding variables with correlation 

coefficients surpassing the 0.8 threshold needs to be 

considered. Consequently, we explored the possibility 

of relaxing the assessment criterion to 0.95, while also 

incorporating the penetration rate as an input param-

eter. The augmented dataset composition is outlined 

in Table S6. 

The prediction outcomes of the two models are 
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shown in Table S7. Analysis of the table shows that 

the new model exhibited lower loss values and higher 

correlation coefficients than the original model. Even 

with the model's excellent performance, a subtle en-

hancement was observed because of the relaxation of 

the Pearson coefficient. This validates our hypothesis 

that in models with few input parameters (fewer than 

8), the outcomes become more credible when the 

threshold for the rejection of parameters with exces-

sively large correlation coefficients is adjusted to 

0.95. 

 

S4.2  Model hyperparameter analysis 

In Section S3.2, we established the model's hy-

perparameters and proceeded to investigate how 

various hyperparameter configurations impact the 

model's accuracy. In this section, we analyze the 

mechanism by which the hyperparameters affect the 

performance of the model. 

A diminutive encoder configuration may curtail 

the model's capacity to glean a sufficient amount of 

pertinent information to effectively represent the 

input data, thereby giving rise to underfitting, a con-

dition where the model inadequately fits the training 

data. Conversely, an overly extensive encoder might 

introduce an excess of superfluous information, 

which can lead to a model excelling on the training 

data but faltering in generalization when confronted 

with unseen data. This was the rationale behind our 

decision to set the encoder depth at 5. 

The primary function of the decoder is to re-

construct the encoded features to match the dimen-

sions of the original data. An excessively large de-

coder can learn numerous superfluous features that 

might enhance the model's performance on the 

training data. However, this could also introduce 

noise and extraneous information when applied to 

unseen data, consequently diminishing the model's 

capacity for generalization. This was the rationale 

behind our decision to set the decoder depth at 1. 

Different tasks are better suited to different at-

tention mechanisms. In some cases, the full attention 

mechanism may be more suitable because it considers 

all parts of the input sequence, making it suitable for 

tasks that require global information. In other cases, 

the sparse attention mechanism may be more appro-

priate as it reduces computational complexity and is 

suitable for handling long sequence data, thereby 

improving efficiency. Therefore, the choice of atten-

tion mechanism should be balanced and determined 

based on task requirements and computational re-

sources. 

In the case of this model, the full attention 

mechanism showed superiority over the sparse atten-

tion mechanism. Fully attentive mechanisms, despite 

their higher parameter count and computational 

complexity, include a comprehensive consideration of 

all input locations. Consequently, they are capable of 

capturing all intricate relationships and dependencies 

within the input sequence. 
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Table S1  Reference review 

Reference Model Factor Aim of prediction 

(Samadi et al., 

2023) 

Support vector machine (SVM) 

Multilayer perceptron neural net-

work (ANN-MLP) 

Takagi–Sugeno fuzzy model (TS 

fuzzy) 

1. Speed 

2. RPM 

3. Thrust 

4. RPM screw conveyor 

5. RPM screw conveyor 

6. Torque screw conv 

Earth pressure values 

(Yu et al., 2023b) 

Sparrow search algorithm-Extreme 

Gradient Boosting (SSA-XGB) 

Whale optimization algo-

rithm-Extreme Gradient Boosting 

(WOA-XGB) 

Random forest (RF) 

Support vector machine (SVM) 

Artificial neural network (ANN) 

1. Earth pressure 

2. Thrust 

3. Cutterhead torque 

4. Cutterhead speed 

5. Cohesion 

6. Internal friction angle 

7. Compression modulus 

8. Ratio of boulder 

9. Uniaxial compressive strength 

10. Rock quality designation 

Penetration rate 

(Flor et al., 

2023) 

Artificial neural network (ANN) 

Long Short-Term Memory (LSTM) 

1. Cutterhead torque 

2. Cutterhead power 

3. RPM 

4. Specific energy 

5. Total absorbed power 

Penetration rate 

(Gokceoglu et 

al., 2023) 

Artificial neural network (ANN) 

Random forest (RF) 

K-means clustering 

 

1. α angle 

2. Uniaxial compressive strength 

3. Weathering degree 

4. Water conditions 

5. Cerchar abrasivity index 

6. RPM 

7. Torque 

8. Thrust 

1. Penetration rate 

2. ROP 

(Xu et al., 2023) Long Short-Term Memory (LSTM) 

1. RPM 

2. Thrust 

3. Tunnel burial depth 

4. Groundwater table 

5. Curvature 

6. Modulus of compressibility 

7. Equivalent bearing capacity 

1. Advance rate 

2. Cutterhead torque 

(Yu et al., 2023a) 

Support vector regression (SVR) 

K-means clustering 

Random forest (RF) 

AdaBoost 

Extreme Gradient Boosting (XGB) 

Multi-channel decoupled deep neu-

ral network (MD-DNN) 

1. Cutterhead speed 

2. Tunneling speed 

3. Geological type 

1. Thrust 

2. Torque 

(Shan et al., 

2023) 

Recurrent Neural Network (RNN) 

variant 

1. Thrust 

2. Torque 

3. Face pressure 

4. Revolutions per minute 

5. Cover depth 

6. Water table 

7. Ground conditions 

Penetration rate 

(Shan et al., 

2022) 

Recurrent Neural Network (RNN) 

Long Short-Term Memory (LSTM) 
Penetration rate Penetration rate 

(Zhang et al., 

2022b) 

Convolutional neural net-

works-Bi-Long Short-Term 

Memory-Attention 

1. Cutter head 

2. Thrust 

3. Torque 

Advance rate 
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(CNN-Bi-LSTM-Attention) 4. Penetration rate 

5. Chamber earth pressure 

(Li et al., 2022a) 

Extreme Learning Machine-Ant 

Lion Optimizer (ELM-ALO) 

Extreme Learning Machine-Loin 

Swarm Optimization (ELM-LSO) 

Extreme Learning Machine-Seagull 

Optimization Algorithm 

(ELM-SOA) 

1. Rock quality designation 

2. Uniaxial compressive strength 

3. Rock mass rating 

4. Brazilian tensile strength 

5. Thrust 

6. Revolution 

Advance rate 

(Yang et al., 

2022) 

Grey Wolf Optimizer-Feature 

Weighted-Multiple Ker-

nel-Support Vector Regression 

(GWO-FW-MKL-SVR) 

Biogeography-Based Optimiza-

tion-Multiple Kernel-Support 

Vector Regression 

(BBO-FW-MKL-SVR) 

Multiple Kernel-Support Vector 

Regression (MKL-SVR) 

Support Vector Regression (SVR) 

1. Earth pressure 

2. Torque 

3. Speed 

4. Cohesion 

5. Friction angle 

6. Compression modulus 

7. Ratio of boulder 

8. Uniaxial compressive strength 

9. Rock quality designation 

Penetration rate 

(Zhang et al., 

2022a) 

Particle Swarm Optimiza-

tion-Bi-Directional Long 

Short-Term Memory 

(PSO-Bi-LSTM) 

Bi-Directional Long Short-Term 

Memory (Bi-LSTM) 

Includes 21 highly correlated 

parameters such as thrust, 

torque, speed, etc. 

1. Power 

2. Torque 

3. Speed 

4. Thrust 

(Bai et al., 2021) 

Linear Regression (LR) 

Decision Tree Regression (DTR) 

Support Vector Regression (SVR) 

Gradient Boosting Regression 

(GBR) 

1. Penetration rate 

2. Bentonite volume 

3. Screw conveyor speed 

4. Face pressure 

5. Cutterwheel torque 

6. Thrust 

1. Thrust 

2. Face pressure 

3. Cutterwheel torque 

(Harandizadeh et 

al., 2021) 

Adaptive Neuro-Fuzzy Inference 

System-Polynomial Neural Net-

work-Imperialism Competitive 

Algorithm (ANFIS-PNN-ICA) 

1. Rock quality designation 

2. Rock mass rating 

3. Brazilian tensile strength 

4. Weathering zone 

5. Uniaxial compressive strength 

6. Revolution 

7. Thrust 

Penetration rate 

(Zhou et al., 

2021b) 

Bayesian Optimization- Extreme 

Gradient Boosting (BO-XGB) 

Extreme Gradient Boosting (XGB) 

1. Brazilian tensile strength 

2. Uniaxial compressive strength 

3. Rock mass rating 

4. Rock quality designation 

5. Weathering zone 

6. Trust force per cutter 

7. Revolution per minute 

Advance rate 

This paper 

Back Propagation (BP) 

Extreme Gradient Boosting (XGB) 

Random Forest (RF) 

Support Vector Regression (SVM) 

K-Nearest Neighbors (KNN) 

Long Short-Term Memory (LSTM) 

Informer 

1. Earth pressure(EP) 

2. Rotation speed(RS) 

3. Torque(TQ) 

4. Boring speed(BR) 

5. Thrust force (TF) 

6. Uniaxial compressive strength 

(UCS) 

7. Surrounding rock grade(SRG) 

8. Liquid limit(LL) 

Thrust force 
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Table S2  Literature research 

References Main input parameters 

Marilena et al. (Cardu et al., 2021) Cutter diameter 

Yu et al. (Yu, et al., 2023a) Cutterhead speed, tunneling speed, geological type 

Cao et al. (Jinpu et al., 2022) penetration, rotation speed, advance speed, cutter brake pressure, shoe 

pump pressure, advance pump pressure, and cutter power, torque, thrust 

Ma et al. (Ma et al., 2022) Penetration rate, total thrust, revolutions per minute, uniaxial compressive 

strength, volumetric joint count 

Li et al. (Li et al., 2022b) Gripper pressure, cutterhead power, cutterhead rotation speed, and propel 

pressure 

Chen et al. (Xu et al., 2021) Torque, cutter head power, motor power, motor current 

Zhou et al. (Zhou et al., 2020) Rotation speed, thrust, torque, penetration, boring speed 

Hou et al. (Hou et al., 2020) Torque, penetration, cutter power, boring speed, thrust 

Chen et al. (Chen et al., 2019) Cutter torque, thrust, cutter power, feed frequency 

O. Acaroglu et al.. (Acaroglu, 2011) Disc cutter diameter，disc cutter width， cutting spacing，penetration of 

discs，UCS，Brazilian tensile strength 

 

 

Table S3  Data set segmentation 

Type Total data Training set Validation set Test set 

Number 37825 26551 3795 7588 

 

 

Table S4  Finalized model hyperparameters 

Type Encoder 

attention 

layer depth 

Number of 

Decoder at-

tention layers 

Type of 

attention 

Dimension of 

Model 

Batch_size Seq_len Label_len Pred_len 

Informer 5 1 Full 1024 32 8 1 1 

 

 

Table S5  Model Length Setting 

 Input length Label length Pred length 

Single time-step output 4 1 1 

8 1 1 

16 1 1 

24 1 1 

30 1 1 

Multiple time-step output 4 2 2 

8 2 2 

4 4 

16 2 2 

4 4 

8 8 

24 2 2 

4 4 

8 8 

12 6 

12 12 

30 2 2 

4 4 

8 8 

15 10 

15 15 
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Table S6  Model input parameter enhancement set 

Parameters type Parameters Data type Unit 

TBM parameters Earth pressure Time-varying 

parameter 

N/mm 

Rotation speed Rpm 

Torque kN*m 

Penetration rate mm/r 

Boring speed mm/min 

Thrust force (output) kN 

Geological param-

eters 

Uniaxial compressive strength 

(UCS) 

Time-invariant 

parameters 

MPa 

Surrounding rock grade N/A 

Liquid limit N/A 

 

 

Table S7  Model performance comparison 

Type MSE R
2
 

Informer-original model 0.001576 0.99819 

Informer-new model 0.001333 0.99847 

 

 

 

 

 

Fig. S1  Response of different models to parameter feedback and adjustment during TBM operation 
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Fig. S2  Architecture of the informer model (Adapted from (Zhou, et al., 2021a)) 

 

 

 

 
Fig. S3  Architecture of the informer model (Adapted from (Zhou, et al., 2021a)) 
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Fig. S4  Guangzhou metro line 22 location (studied section) 
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Fig. S5  Information on model input parameters 
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Fig. S6  Effect of different hyperparameters on model LOSS value 

 

 

 
Fig. S7  Comparison of predicted values with true values 

 

 
Fig. S8  Guangzhou Metro Line 18 Section Location 
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Fig. S9  Predictive performance of the model for a new project 

 

 

 

 
Fig. S10  Illustration of the prediction pattern 

 
 
 

 
Fig. S11  Definition of relevant parameters 
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