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Section S1  LSTM equations 

 𝑐(𝑡) = 𝑔𝑎𝑡𝑒𝑓𝑜𝑟𝑔𝑒𝑡 ∗ 𝑐(𝑡 − 1) + 𝑔𝑎𝑡𝑒𝑖𝑛 ∗ 𝑡𝑎𝑛ℎ (𝑊𝐶 [
𝑥(𝑡)

ℎ(𝑡 − 1)
] + 𝑏𝑐) (S1) 

 ℎ(𝑡) = 𝑔𝑎𝑡𝑒𝑜𝑢𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐(𝑡)) (S2) 

 𝑔𝑎𝑡𝑒𝑓𝑜𝑟𝑔𝑒𝑡 = 𝜎 (𝑊𝑓𝑜𝑟𝑔𝑒𝑡 [
𝑥(𝑡)

ℎ(𝑡 − 1)
] + 𝑏𝑓) (S3) 

 𝑔𝑎𝑡𝑒𝑖𝑛 = 𝜎 (𝑊𝑖𝑛 [
𝑥(𝑡)

ℎ(𝑡 − 1)
] + 𝑏𝑖𝑛) (S4) 

 𝑔𝑎𝑡𝑒𝑜𝑢𝑡 = 𝜎 (𝑊𝑜𝑢𝑡 [
𝑥(𝑡)

ℎ(𝑡 − 1)
] + 𝑏𝑜𝑢𝑡) (S5) 

where 𝑊 and 𝑏 represent the weight coefficients and bias coefficients, determined through training with a 

large amount of data. The 𝜎 and 𝑡𝑎𝑛ℎ functions are as follows: 

 𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (S6) 

 𝑡𝑎𝑛ℎ =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (S7) 

 

Section S2 Geometry model 

The center column serves as the support structure for the wind turbine. Each column is further divided 

into upper, middle, and down sections, with the down section designated for accommodating ballast, thereby 

lowering the system's center of mass and enhancing stability. The geometric dimensions of the platform are 

detailed in Table S1. The mooring system consists of three catenary lines, which have a length of 700 m and 

are spaced 120° apart. For more details, one can refer to the previous publication (Feng et al., 2023). 
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Table S1 Platform geometry dimensions, unit: m. 

Parameter Value 

Draft 22 

Air gap 12 

Column height (up, mid, down） 16, 12, 6 

Column diameter (up, mid, down） 14, 16, 24 

Center distance, a 34.64 

Width, d 10 

Rod diameter, r 3 

 

Section S3 Validation of the CFD model 

The mesh distribution of the whole fluid domain is depicted in Fig. S1, utilizing an orthogonal grid type. 

From the far field to the near field, grids were continuously refined to achieve smooth flow field transitions. 

Besides, refinement grids were created near the free surface and platform surface as well. According to the 

advice from STAR-CCM+ User Guide, grid sizes near the free surface were set as 2 m, 2 m, 0.125 m in 

X-Y-Z direction respectively. The grid independence verification results are shown in Table S2. Platform pitch 

motion RAOs (response amplitude operator) under different numbers of grids were compared. In terms of 

computational accuracy and cost, 12.7 million grids, with 9.1 million in the background domain and 3.6 

million in the motion domain, were adopted for subsequent simulation analysis. 

 

(a)  

 

(b)  

Fig. S1 The mesh distribution of the CFD model: (a) mesh in the background domain; (b) mesh on the 

platform surface. 
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Table S2 Grid independence verification. 

Grids quantity（million） 5.2 9.6 12.7 15.4 

Grid size on platform (m) 0.2 0.1 0.05 0.02 

Pitch RAO (°/m) 0.107 0.156 0.182 0.189 

Relative error (%) 43.38 17.46 3.70 / 

 
 

The convergence study of time step was completed by carrying out simulations of a fixed platform under 

a regular wave. The hydrodynamic loads on the platform at four different time steps were recorded in Fig. S2. 

One can see that the results with the time step of 0.01 s and 0.02 s are close, while the result with the time step 

of 0.05 s has significant differences. Therefore, the time step of 0.02 s was selected for further analysis. 

 

  

Fig. S2 The convergence of time step. 

 

The accuracy of the CFD model was validated preliminarily through the model test results (Feng et al., 

2023). Three characteristic parameters in pitch DOF were compared, as shown in Table S3. Natural period and 

viscous damping ratio were obtained through the free decay test, and the pitch RAO was obtained through the 

model test under a regular wave. In general, the CFD model is reliable with each difference of approximately 

5%. 

 

Table S3 CFD model validation in pitch DOF. 

Parameter CFD simulation Experiment Relative error 

Natural period (s) 27.3 28.5 4.21% 

Viscous Damping ratio 0.0711 0.0748 4.95% 

Pitch RAO (°/m) 0.182 0.193 5.70% 

 

 

Section S4 Statistical parameters in data processing 

In this study, the normalized data was used to calculate the average value error E_mean, extreme value 

error E_max, curve fitting degree 𝑅_𝑓𝑖𝑡 and root mean square error 𝑅𝑀𝑆𝐸, as follows: 
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 𝐸_𝑚𝑒𝑎𝑛 =
|𝐹̅𝑐𝑎𝑙 − 𝐹̅𝑡𝑟𝑢𝑒|

𝐹̅𝑡𝑟𝑢𝑒

 (S8) 

 𝐸_𝑚𝑎𝑥 =
|𝐹𝑐𝑎𝑙−𝑚𝑎𝑥 − 𝐹𝑡𝑟𝑢𝑒−𝑚𝑎𝑥|

𝐹𝑡𝑟𝑢𝑒−𝑚𝑎𝑥
 (S9) 

 𝑅_𝑓𝑖𝑡 = 1 − √
∑ (𝐹𝑐𝑎𝑙

𝑖 − 𝐹𝑡𝑟𝑢𝑒
𝑖 )2𝑛

𝑖

∑ (𝐹𝑡𝑟𝑢𝑒
𝑖 )2𝑛

𝑖

 (S10) 

 𝑅𝑀𝑆𝐸 = √
∑ (𝐹𝑐𝑎𝑙

𝑖 − 𝐹𝑡𝑟𝑢𝑒
𝑖 )2𝑛

𝑖

𝑛
 (S11) 

Among them, 𝐹𝑐𝑎𝑙  represents the hydrodynamic load calculated by the neural network model, 𝐹𝑡𝑟𝑢𝑒 

represents the true value, 𝐹̅𝑐𝑎𝑙 indicates the average value of the calculated load, 𝐹𝑐𝑎𝑙−𝑚𝑎𝑥 indicates the 

maximum value of the calculated load, and 𝑛 signifies the length of the load series. 

 

Section S5 Determination of optimal model 

S5.1  Sample characteristics influence 

To evaluate the impact of input characteristics on model accuracy, this study investigated the influence of 

different input dimensions first. Ideally, the model input should be fed with a total of seven dimensions, 

including wave elevation, displacement, velocity and acceleration of surge and pitch DOFs. However, it is 

extremely difficult or expensive to achieve complete motion measurement in the far sea due to the lack of 

reference objects (Wang et al., 2018). In the current mature measurement system, surge acceleration, pitch 

velocity and pitch angle can be easily and accurately obtained by the accelerometer and gyroscope. Therefore, 

this study considered the influence of four inputs (wave height, surge acceleration, pitch angular velocity, 

pitch angle) on the model accuracy based on actual measurement feasibility. Additionally, the effects of sensor 

failure during the measurement process were taken into account. Thus, the effects of three inputs (wave height, 

pitch velocity, pitch angle) and two inputs (wave height, surge acceleration) were also considered in this study. 

The model calculation results under different input dimensions are shown in the Fig. S3 and Table S4. The 

seven-input model demonstrates the highest accuracy, with a curve fitting degree of 97.37% and the smallest 

RMSE of only 1.43%. Conversely, the three-input model exhibits the poorest accuracy and fails to capture the 

internal relationship. Comparatively, the two-input model performs better than the three-input model, 

highlighting the crucial effect of the acceleration input on model accuracy. The four-input model, utilizing 

easily accessible signals, has a high curve fitting degree (93.67%), making it the selected model for 

subsequent training. 
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Fig. S3 Influences of input dimensions. 

 

Table S4 Model performances under different input dimensions. 

Input dimension E_mean E_max R_fit RMSE 

7 1.25% 2.52% 97.37% 1.43% 

4 1.74% 1.33% 94.67% 3.44% 

3 12.3% 28.63% 68.74% 16.96% 

2 2.71% 5.03% 91.95% 4.37% 

 
 

In addition to the input dimensions, the sampling period of the training data plays a significant role in the 

model accuracy. A low sampling frequency may overlook the intrinsic features of the training data, while a 

high sampling frequency will increase training costs and impose hardware requirements. To assess the impact 

of the sampling period on model accuracy, this study considered four different sampling periods (0.02 s, 0.05 s, 

0.1 s, 0.5 s). Models were trained by sample data with four sampling periods, and then tested with sample data 

with the 0.02 period. Model calculation results and their performances are shown in Fig. S4 and Table S5. The 

model with a 0.5 s sampling period fails to learn the intrinsic features of the sample data. Conversely, the 

results with the 0.05 s sampling period demonstrate a good fit effect (94.18%) and low RMSE (3.16%). 

Therefore, the sampling period of 0.05 s was adopted for subsequent studies. 

 

  

Fig. S4 Influences of sample period. 
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Table S5 Model performances under different sample periods. 

Sampling period (s) E_mean E_max R_fit RMSE 

0.02 1.74% 1.33% 94.67% 3.44% 

0.05 2.25% 1.44% 94.18% 3.76% 

0.1 3.54% 7.92% 90.58% 5.11% 

0.5 27.16% 49.16% 40.15% 32.47% 

 
 

Sample data is a time series of simulation results, often with a long duration, which need to be divided 

into several batches for training. To determine an appropriate truncation time length that preserves the 

inherent mapping characteristics of the sample data and ensures effective training, this study investigated the 

influence of four different time windows on the training performances. The results are summarized in Table 

S6. Among these, the time window of 1620 seconds achieves the best prediction effect with the highest curve 

fitting degree (94.35%) and minimum RMSE (3.07%). 

 

Table S6 Model performances under different time windows. 

Time window (s) E_mean E_max R_fit RMSE 

405 0.39% 1.76% 93.95% 3.28% 

810 1.11% 3.53% 93.89% 3.31% 

1620 0.46% 1.07% 94.35% 3.07% 

3240 2.25% 1.44% 94.18% 3.76% 

 
 

S5.2  Structure parameter influence 

Sensitivity analysis of the LSTM layers (1, 2, 3) and neurons (64, 128, 256, 512) were carried out to 

determine the optimal model structure parameters. Validation results of different model parameters are 

presented in Table S7 and Table S8. It is evident that the combination of two LSTM layers and 128 neurons in 

each layer yields the most favorable results. This combination exhibits the highest curve fitting degree, while 

also having the lowest root mean square error and mean value error. When the number of neurons reaches 512, 

each error increases rapidly, indicating that the overfitting may have occurred. 

 

Table S7 Model performances under different LSTM layers. 

LSTM layers E_mean E_max R_fit RMSE 

1 1.74% 1.33% 93.67% 3.44% 

2 0.46% 1.07% 94.35% 3.07% 

3 2.18% 1.16% 93.17% 3.71% 
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Table S8 Model performances under different neuron numbers. 

Neuron E_mean E_max R_fit RMSE 

64 0.46% 1.07% 94.35% 3.07% 

128 0.047% 1.92% 94.57% 2.95% 

256 0.33% 2.10% 94.44% 3.01% 

512 7.5% 13.74% 84.29% 8.52% 

 
 

In addition, training parameters, like solver, learn rate and max epochs, were also considered in this study 

and adjusted to obtain the best training effect. Finally, the optimal LSTM neural network model was 

determined after the above sensitivity analysis. 

 

Section S6 Simulation cases 

Wind conditions and wave conditions were shown in Table S9 and Table S10. The wind turbulence was 

set to Class C, and the irregular sea states were described by the Pierson-Moskowitz spectrum. Finally, the 

combination of wind and wave conditions totaled 64 cases, as presented in Table S11. 

 

Table S9 Wind conditions. 

Wind case Wind speed (m/s) 

Ⅰ 7.1 

Ⅱ 11.4 

Ⅲ 17.9 

Ⅳ 44 

 

Table S10 Wave conditions. 

Wave case Significant wave height (m) Peak period (s) 

A 1.67 8.0 

B 1.67 8.5 

C 1.67 10 

D 1.67 16 

E 2.5 8.0 

F 2.5 8.5 

G 2.5 10 

H 2.5 16 

I 4.29 8.0 

J 4.29 8.5 

K 4.29 10 

L 4.29 16 

M 10.9 8.0 

N 10.9 8.5 

O 10.9 10 

P 10.9 16 
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Table S11 Combined environmental conditions. 

Combination case Ⅰ Ⅱ Ⅲ Ⅳ 

A 1 2 3 4 

B 5 6 7 8 

C 9 10 11 12 

D 13 14 15 16 

E 17 18 19 20 

F 21 22 23 24 

G 25 26 27 28 

H 29 30 31 32 

I 33 34 35 36 

J 37 38 39 40 

K 41 42 43 44 

L 45 46 47 48 

M 49 50 51 52 

N 53 54 55 56 

O 57 58 59 60 

P 61 62 63 64 

 

Section S7 Special cases verification 

To verify the applicability of the LSTM neural network model in complex environmental conditions, 

special cases were considered in this study, including wave spectrum, wave direction and current presence, as 

shown in Table S12. All these cases were created based on previous case 22. The hydrodynamic load 

calculation results are plotted in Fig. S5 and calculation errors are recorded in Table S13. The LSTM model 

shows similar calculation performances with previous cases and is still applicable in these complicated sea 

states. However, it’s obvious that the performance of the model is relatively a little bad in different wave 

direction conditions, with the RMSE of 4.84%. Wave directions have significant influences on the 

hydrodynamic loads. For the future research, one should apply large amount of training cases with small 

direction angle subdivision to improve the applicability of the LSTM neural network model. 

 

Table S12 Special cases based on case 22. 

Verification type Training cases Test case 

Wave spectrum Pierson-Moskowitz Jonswap  

Wave direction (°) 0, 10, 20, 40 30 

Current velocity (m/s) 0, 0.25, 0.5, 1 0.75 
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(a) 

 

(b) 

 

(c)  

Fig. S5 Model verification under special cases: (a) wave spectrum; (b) wave direction; (c) current presence. 

 

Table S13 Model performances under special cases verification.  

Verification case E_mean E_max R_fit RMSE 

Wave spectrum 1.91% 3.01% 94.98% 2.58% 

Wave direction 3.86% 4.11% 92.45% 4.84% 

Current presence 1.57% 1.44% 96.11% 2.08% 

 
 

Section S8 Loads data in Exp1 

The load history of the FOWT model in Exp 1 was plotted in Fig. S6. The inertial load was calculated by 

the accelerometer, the constraint load was measured by the mooring tension cell, the aerodynamic load was 

measured by the tower top load cell. Then, the hydrodynamic load was calculated based on Eq. (S1).  
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(a) 

 

(b) 

 

(c)  

 

(d)  

Fig. S6 Loads data of the FOWT in Exp 1: (a) inertial load 𝐹𝐼𝑛𝑒𝑟𝑡𝑖𝑎; (b) mooring load 𝐹𝑀𝑜𝑜𝑟; (c) 

aerodynamic load 𝐹𝐴𝑒𝑟𝑜; (d) hydrodynamic load 𝐹𝐻𝑦𝑑𝑟𝑜. 
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