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Section S1: Derivations of Eq. (8)
Combining Egs. (4)-(7), we have
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and the tension of the LCE fiber is:
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The temperature field can be written as:
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Combining Egs. (S1)-(S3), we obtain the temperature field in a different form:
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Correspondingly, Eq. (S5) can be written as:
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Section S2: Derivations of Egs. (17) and (18)

And by defining x=w +3,a)0 = \/a_, Eqg. (16) can be re-expressed as:
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Utilizing the linear perturbation method, we can derive the linearized equation as follows:
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Eq. (S7) can alternatively be written as:
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Therefore, the Hurwitz criterion &, is:
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By solving the governing equation, the analytical solution can be obtained as follows:
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The amplitude is:

and the frequency is:
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