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Section S1 Archard wear theory

In the Archard wear theory, the material wear is directly proportional to the normal contact
pressure and relative sliding distance, and inversely proportional to the hardness of the contact
material:
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where, V,, is the volume of material wear within the contact patch, F, is the normal contact stress,
H is the material hardness, S is the relative sliding distance, and ki, is the wear coefficient.

The relative sliding distance and the sliding velocity of the contact patch are calculated as

follows:
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where, (1, %, and 3 are the longitudinal, transverse, and spin creep rates, and u; and u, are the

longitudinal and transverse elastic displacements, respectively.

Section S2 Wheel-rail creep rate

When the wheel rolls, the front part of the wheel produces compressive deformation, the back
part produces tensile deformation, while the rail stretches in front and is compressed at the back.
As a result, the distance traveled by the wheel during rolling is smaller than that of pure rolling,
and this phenomenon is known as wheel-rail creep. The calculation of the longitudinal, lateral, and
spin creep rates is as follows:
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where V1, V1 are wheel and rail longitudinal velocity; V., V. are wheel and rail lateral velocity;
Qus, Q3 are wheel and rail angular velocity.

Section S3 The equivalent stress
The equivalent stress o, for each position j of node i is:
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Then, the characteristic of the variable stress cycle oy, and the mean value of the cyclic stress
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The Serensen-Kinasoshvili approximation theory of ultimate stress is used in calculating rail
fatigue damage by the rolling contact fatigue damage criterion adopted in this paper. Then, the

average value oy, and amplitude o, of the cyclic stress are:
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where oy, is the average value of cyclic stress, g, is the amplitude of cyclic stress, and , is the
sensitivity coefficient of material asymmetry.
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Fig. S1 Rail-wheel contact model

Section S4 The wagon structures

Friction pairs such as the center plate friction and side bearing friction are considered
between the bolster and car body; vertical and lateral suspensions are directly equivalent between
the car body and side frame, with vertical, lateral, and longitudinal stiffnesses of the bolster spring
and friction characteristics of the wedge between the side frame and bolster being accounted for.
Moreover, the lateral and longitudinal clearance of the axle box suspension is considered, and a
spring-damping device is used within the range of axle box clearance; also, a spring-damping



device in parallel with a linear spring stop is implemented beyond the contact of the axle box with
the side frame. The lateral support rods between the side frames are simplified to display torsional
stiffness.

Section S5 Model validation

Fig. S2 compares the differences between simulation results and measurement results. From
Fig. S2a and S2b, the trend of the rail wear test is consistent with the simulation results. The
maximum error between the simulated and calculated results was 7.9%, most errors were less than
6%, and the average error was 4.2%. Observing Fig. S2c and S2d, the simulated trends of coupler
force and coupler yaw angle closely resemble the measured data. The maximum coupler yaw
angles were measured at 10.9<and simulated to be 11.2< with the maximum measured coupler
force around 594 kN, compared to 611 kN in simulation. The maximum coupler force and rotation
angle differences in the simulation results were less than 3%. The simulation results indicate that
these dynamic and wear models reasonably reflect real-world conditions.
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Fig. S2 Model validation results: (a) Rail wear; (b) Relative error; (c) Coupler compressing force; (d)

Coupler yaw angle

Section S6 NURBS curve fitting method
NURBS is a curve of degree k defined by n+1 control points of the form:
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where d; (i=0,1,..., n) is the control point; w; is the corresponding weight factor; N;y is a B-
spline basis function of degree k, determined by the node vector U=[ug,Us,...,Ur+1]- The B-spline
basis function of degree k is defined by the Cox-DeBoor recursion formula as follows:
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The node vector U=[ug,Us,...,Ur+ks1] is determined according to the normalized cumulative
chord length parameterization method:
{uo =0
. (S11)
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where |Ap;_4| is the forward difference vector, and Ap;=pj+1-p is the chord length vector.

The NURBS description of the rail profile curve is established by using finite discrete points
(type value points) on the rail profile. Given n-type value points p; and their corresponding n+2
weight factors h (i=0, ..., n+1), we need to perform inverse design for the control points. The
relationship between the weight factor of control point w; and the weight factor of type value point

h; is as follows:
h,.= h(um):Z(ol N;, (ui+3)' (S12)

According to Eqg. (S12), n equations can be listed. Two tangent vector boundary conditions

are added according to the curve characteristics of the rail profile:
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Section S7 BP neural network
The calculation method of the BP neural network is the Gauss-Newton method:

-1
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where @ (k) represents the vector composed of the weights and thresholds of the Kth iteration.
The structure of the Levenberg-Marquardt algorithm is as follows:

ok +1) =ak)~[ I (@) (@) + 4] I(@)e(@,) (S16)

We randomly initialize the weights and thresholds for the LM-BP neural network. If the
initial value is incorrectly selected, each iteration will amplify the system error. Therefore, we
employ the PSO (particle swarm optimization) algorithm to optimize the weights and thresholds
of the neural network. PSO is a swarm intelligence optimization algorithm where in each iteration,
particles self-update by tracking their individual best (Ppet) and the global best (Gpest)

performances. The updating equations for velocity and position are as follows:
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Here, V', X%4, and Ppey are the iterative velocity, position, and individual optimal solutions
for particle i at time t, respectively; Gy is the optimal position of the population at time t; ¢; and
c, are the learning factor coefficients; r; and r, are random numbers from 0 to 1, and w is the
weight. Finally, tmax indicates the maximum number of iterations. The PSO-LM-BP neural
network is shown in Fig. S3.
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Fig. S3 PSO-LM-BP neural network architecture
Section S8 Levenberg-Marquardt algorithm

The most critical step in the LM algorithm is the calculation of the Jacobian matrix,
which is computed using a modified version of the BP algorithm:
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If the scaling factor x=0, the LM algorithm is equivalent to the Gauss-Newton method; if
the scaling factor takes a tremendous value, the LM algorithm approaches gradient descent.

Section S9 Microvariation, Adaptive mutation operator and Chaotic disturbance

Microvariation

A small probability mutation is introduced by incorporating chaotic disturbances during



individual replication. This approach partly mitigates the phenomenon of “premature convergence”
caused by the selection process. Also, it reduces the probability of crossover between identical
individuals. The concept of chaotic disturbance is described further in the electronic
supplementary materials.

Adaptive mutation operator

The adaptive mutation operator implies that the mutation strength should gradually increase
with the number of generations, enabling the search algorithm to escape local optima:
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In Eqg. (S19), the maximum and minimum values of the mutation operators are Pymax=0.05 and
Pmmin=0.001, respectively, with #=P ymax—Pmmin-
Also, the parameter variation mode is:
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Chaotic disturbance

The concept of chaotic disturbance is:
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where X', is the new individual; X, is the current individual; g is the chaotic disturbance
operator; « is the influence factor of artificial degradation, and its value range is (0, 0.01); size
is the population size. Firstly, the chaos disturbance factor f is calculated. Then, the
disturbance radius of is determined by reducing the disturbance size by artificial degradation
factor a. (—1)" can make the disturbance evenly traverse the points with gene as the center and
interval length 2ap.

Individuals with high fitness functions are preserved within the population to avoid falling
into local optima. In contrast, individuals with low fitness functions undergo additional chaotic
optimization processing. Additionally, incorporating chaotic optimization can bring individuals
closer to the optimal solution and reduce the number of evolutionary generations. The iterative
formula for chaotic optimization utilizes a tent map:

. 1:{v-tn, t <0.5, (22)
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Here, the tent has a chaotic effect when v is in the range of 1 to 2.
Chaotic disturbance can be added as follows:
X0 = (X = X ) (£ =0.5) + (X e + X ) 0.5 (S23)

where Xmax and Xpin are the upper and lower limits of an individual, respectively.

Thus, we employed a chaotic microvariation adaptive genetic algorithm to address the multi-



objective optimization problem involving control point coordinates and wheel-rail damage. The
target value in Fig. S4 represents the rail damage. As the number of evolutionary iterations
increases, the target value progressively diminishes. In the optimization algorithm, when the
number of evolutionary iterations reaches 50, the objective function achieves a global optimal
value. When the number of iterations reaches 100, the target value achieves convergence. This
result demonstrates that the proposed optimization algorithm exhibits strong convergence

properties for rail profile optimization.
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