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Section S1  Archard wear theory 

In the Archard wear theory, the material wear is directly proportional to the normal contact 

pressure and relative sliding distance, and inversely proportional to the hardness of the contact 

material: 
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where, Vw is the volume of material wear within the contact patch, Fn is the normal contact stress, 

H is the material hardness, S is the relative sliding distance, and kw is the wear coefficient. 

The relative sliding distance and the sliding velocity of the contact patch are calculated as 

follows: 
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where, ζ1, ζ2, and ζ3 are the longitudinal, transverse, and spin creep rates, and u1 and u2 are the 

longitudinal and transverse elastic displacements, respectively. 

 

Section S2  Wheel-rail creep rate 

When the wheel rolls, the front part of the wheel produces compressive deformation, the back 

part produces tensile deformation, while the rail stretches in front and is compressed at the back. 

As a result, the distance traveled by the wheel during rolling is smaller than that of pure rolling, 

and this phenomenon is known as wheel-rail creep. The calculation of the longitudinal, lateral, and 

spin creep rates is as follows: 
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where Vw1, Vr1 are wheel and rail longitudinal velocity; Vw2, Vr2 are wheel and rail lateral velocity; 

Ώw3, Ώr3 are wheel and rail angular velocity. 

 

Section S3  The equivalent stress 

The equivalent stress σeq for each position j of node i is: 
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Then, the characteristic of the variable stress cycle σm and the mean value of the cyclic stress 

σa is: 
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The Serensen-Kinasoshvili approximation theory of ultimate stress is used in calculating rail 

fatigue damage by the rolling contact fatigue damage criterion adopted in this paper. Then, the 

average value σm and amplitude σa of the cyclic stress are: 
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where σm is the average value of cyclic stress, σa is the amplitude of cyclic stress, and ψσ is the 

sensitivity coefficient of material asymmetry. 

 

Fig. S1  Rail-wheel contact model 

 

Section S4  The wagon structures 

Friction pairs such as the center plate friction and side bearing friction are considered 

between the bolster and car body; vertical and lateral suspensions are directly equivalent between 

the car body and side frame, with vertical, lateral, and longitudinal stiffnesses of the bolster spring 

and friction characteristics of the wedge between the side frame and bolster being accounted for. 

Moreover, the lateral and longitudinal clearance of the axle box suspension is considered, and a 

spring-damping device is used within the range of axle box clearance; also, a spring-damping 



 

 

device in parallel with a linear spring stop is implemented beyond the contact of the axle box with 

the side frame. The lateral support rods between the side frames are simplified to display torsional 

stiffness. 

 

Section S5  Model validation 

Fig. S2 compares the differences between simulation results and measurement results. From 

Fig. S2a and S2b, the trend of the rail wear test is consistent with the simulation results. The 

maximum error between the simulated and calculated results was 7.9%, most errors were less than 

6%, and the average error was 4.2%. Observing Fig. S2c and S2d, the simulated trends of coupler 

force and coupler yaw angle closely resemble the measured data. The maximum coupler yaw 

angles were measured at 10.9° and simulated to be 11.2°, with the maximum measured coupler 

force around 594 kN, compared to 611 kN in simulation. The maximum coupler force and rotation 

angle differences in the simulation results were less than 3%. The simulation results indicate that 

these dynamic and wear models reasonably reflect real-world conditions. 
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Fig. S2 Model validation results: (a) Rail wear; (b) Relative error; (c) Coupler compressing force; (d) 

Coupler yaw angle 

 

Section S6  NURBS curve fitting method 

NURBS is a curve of degree k defined by n+1 control points of the form: 
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where di（i=0,1,…, n）is the control point; wi is the corresponding weight factor; Ni,k(u) is a B-

spline basis function of degree k, determined by the node vector U=[u0,u1,…,un+k+1]. The B-spline 

basis function of degree k is defined by the Cox-DeBoor recursion formula as follows: 
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The node vector U=[u0,u1,…,un+k+1] is determined according to the normalized cumulative 

chord length parameterization method: 
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where |Δpi-1| is the forward difference vector, and Δpi=pi+1-p is the chord length vector. 

The NURBS description of the rail profile curve is established by using finite discrete points 

(type value points) on the rail profile. Given n-type value points pi and their corresponding n+2 

weight factors h (i=0, ..., n+1), we need to perform inverse design for the control points. The 

relationship between the weight factor of control point wi and the weight factor of type value point 

hi is as follows: 
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According to Eq. (S12), n equations can be listed. Two tangent vector boundary conditions 

are added according to the curve characteristics of the rail profile: 
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Section S7  BP neural network 

The calculation method of the BP neural network is the Gauss-Newton method： 
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where (k) represents the vector composed of the weights and thresholds of the Kth iteration. 

The structure of the Levenberg-Marquardt algorithm is as follows: 
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We randomly initialize the weights and thresholds for the LM-BP neural network. If the 

initial value is incorrectly selected, each iteration will amplify the system error. Therefore, we 

employ the PSO (particle swarm optimization) algorithm to optimize the weights and thresholds 

of the neural network. PSO is a swarm intelligence optimization algorithm where in each iteration, 

particles self-update by tracking their individual best (Pbest) and the global best (Gbest) 

performances. The updating equations for velocity and position are as follows: 
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Here, V
t
id, X

t
id, and Pbest are the iterative velocity, position, and individual optimal solutions 

for particle i at time t, respectively; Gbest is the optimal position of the population at time t; c1 and 

c2 are the learning factor coefficients; r1 and r2 are random numbers from 0 to 1, and ω is the 

weight. Finally, tmax indicates the maximum number of iterations. The PSO-LM-BP neural 

network is shown in Fig. S3. 

 

Fig. S3  PSO-LM-BP neural network architecture 

 

Section S8  Levenberg-Marquardt algorithm 

The most critical step in the LM algorithm is the calculation of the Jacobian matrix, 

which is computed using a modified version of the BP algorithm: 
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If the scaling factor μ=0, the LM algorithm is equivalent to the Gauss-Newton method; if 

the scaling factor takes a tremendous value, the LM algorithm approaches gradient descent. 

 

Section S9  Microvariation, Adaptive mutation operator and Chaotic disturbance 

Microvariation 

A small probability mutation is introduced by incorporating chaotic disturbances during 



 

 

individual replication. This approach partly mitigates the phenomenon of “premature convergence” 

caused by the selection process. Also, it reduces the probability of crossover between identical 

individuals. The concept of chaotic disturbance is described further in the electronic 

supplementary materials. 

Adaptive mutation operator 

The adaptive mutation operator implies that the mutation strength should gradually increase 

with the number of generations, enabling the search algorithm to escape local optima: 
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In Eq. (S19), the maximum and minimum values of the mutation operators are Pmmax=0.05 and 

Pmmin=0.001, respectively, with η=Pmmax−Pmmin. 

Also, the parameter variation mode is: 
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Chaotic disturbance 

The concept of chaotic disturbance is: 
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where X'n is the new individual; Xn is the current individual; β is the chaotic disturbance 

operator; α is the influence factor of artificial degradation, and its value range is (0, 0.01); size 

is the population size. Firstly, the chaos disturbance factor β is calculated. Then, the 

disturbance radius αβ is determined by reducing the disturbance size by artificial degradation 

factor α. (−1)
n
 can make the disturbance evenly traverse the points with gene as the center and 

interval length 2αβ. 

Individuals with high fitness functions are preserved within the population to avoid falling 

into local optima. In contrast, individuals with low fitness functions undergo additional chaotic 

optimization processing. Additionally, incorporating chaotic optimization can bring individuals 

closer to the optimal solution and reduce the number of evolutionary generations. The iterative 

formula for chaotic optimization utilizes a tent map: 
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Here, the tent has a chaotic effect when v is in the range of 1 to 2. 

Chaotic disturbance can be added as follows: 
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where Xmax and Xmin are the upper and lower limits of an individual, respectively. 

Thus, we employed a chaotic microvariation adaptive genetic algorithm to address the multi-



 

 

objective optimization problem involving control point coordinates and wheel-rail damage. The 

target value in Fig. S4 represents the rail damage. As the number of evolutionary iterations 

increases, the target value progressively diminishes. In the optimization algorithm, when the 

number of evolutionary iterations reaches 50, the objective function achieves a global optimal 

value. When the number of iterations reaches 100, the target value achieves convergence. This 

result demonstrates that the proposed optimization algorithm exhibits strong convergence 

properties for rail profile optimization. 
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Fig. S4  Genetic Algorithm-Opti evolution curve 


